메뉴 건너뛰기




Volumn 382, Issue , 2009, Pages

Prototype vector machine for large scale semi-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATA; COMPUTATIONAL INTENSIVENESS; GRAPH-BASED; KERNEL MATRICES; LOW RANK APPROXIMATIONS; MACHINE-LEARNING; MINIMUM INFORMATION LOSS; MODEL REPRESENTATION; PROTOTYPE VECTORS; REGULARIZER; SCALING PROPERTIES; SEMI-SUPERVISED LEARNING; UNLABELED DATA;

EID: 70049106797     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1553374.1553531     Document Type: Conference Paper
Times cited : (16)

References (18)
  • 4
    • 0036454664 scopus 로고    scopus 로고
    • Semisupervised support vector machines for unlabeled data classification
    • Fung, G., & Mangasarian, O. L. (2001). Semisupervised support vector machines for unlabeled data classification. Optimization Methods and Software, 15, 29-44.
    • (2001) Optimization Methods and Software , vol.15 , pp. 29-44
    • Fung, G.1    Mangasarian, O.L.2
  • 7
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Morgan Kaufmann
    • Joachims, T. (1999). Transductive inference for text classification using support vector machines. International Conference on Machine Learning (pp. 200-209). Morgan Kaufmann.
    • (1999) International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 9
    • 33750729556 scopus 로고    scopus 로고
    • M. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
    • M. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
  • 11
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods - Support vector learning, 185-208.
    • (1999) Advances in kernel methods - Support vector learning , pp. 185-208
    • Platt, J.1
  • 17
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (pp. 912-919).
    • (2003) In ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 18
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • Zhu, X., & Lafferty, J. (2005). Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. The 22nd International Conference on Machine Learning (pp. 1052 - 1059).
    • (2005) The 22nd International Conference on Machine Learning , pp. 1052-1059
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.