-
2
-
-
33747128180
-
Large scale transductive svms
-
Collobert, R., Sinz, F., Weston, J., Bottou, L., & Joachims, T. (2006). Large scale transductive svms. Journal of Machine Learning Research, 7, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
Joachims, T.5
-
4
-
-
0036454664
-
Semisupervised support vector machines for unlabeled data classification
-
Fung, G., & Mangasarian, O. L. (2001). Semisupervised support vector machines for unlabeled data classification. Optimization Methods and Software, 15, 29-44.
-
(2001)
Optimization Methods and Software
, vol.15
, pp. 29-44
-
-
Fung, G.1
Mangasarian, O.L.2
-
6
-
-
39049145967
-
Semisupervised graph-based hyperspectral image classification
-
Gustavo, C., Marsheva, T., & Zhou, D. (2007). Semisupervised graph-based hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 45, 3044-3054.
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, pp. 3044-3054
-
-
Gustavo, C.1
Marsheva, T.2
Zhou, D.3
-
7
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Morgan Kaufmann
-
Joachims, T. (1999). Transductive inference for text classification using support vector machines. International Conference on Machine Learning (pp. 200-209). Morgan Kaufmann.
-
(1999)
International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
9
-
-
33750729556
-
-
M. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
-
M. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
-
-
-
-
11
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods - Support vector learning, 185-208.
-
(1999)
Advances in kernel methods - Support vector learning
, pp. 185-208
-
-
Platt, J.1
-
14
-
-
85162020557
-
Efficient convex relaxation for transductive support vector machine
-
Xu, Z., Jin, R., Zhu, J., King, I., & Lyu, M. (2008). Efficient convex relaxation for transductive support vector machine. In Advances in neural information processing systems 20, 1641-1648.
-
(2008)
Advances in neural information processing systems
, vol.20
, pp. 1641-1648
-
-
Xu, Z.1
Jin, R.2
Zhu, J.3
King, I.4
Lyu, M.5
-
16
-
-
22944492898
-
Learning with local and global consistency
-
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2003). Learning with local and global consistency. Neural Information Processing Systems 16 (pp. 321-328).
-
(2003)
Neural Information Processing Systems
, vol.16
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
17
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (pp. 912-919).
-
(2003)
In ICML
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
18
-
-
31844438481
-
Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
-
Zhu, X., & Lafferty, J. (2005). Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. The 22nd International Conference on Machine Learning (pp. 1052 - 1059).
-
(2005)
The 22nd International Conference on Machine Learning
, pp. 1052-1059
-
-
Zhu, X.1
Lafferty, J.2
|