메뉴 건너뛰기




Volumn 145, Issue , 2015, Pages 191-197

Recursive wind speed forecasting based on Hammerstein Auto-Regressive model

Author keywords

ANN model; ARIMA model; HAR model; Iterative multi steps WSF; Pattern identification; Short term forecast

Indexed keywords

FORECASTING; MEAN SQUARE ERROR; NEURAL NETWORKS; SCHEDULING;

EID: 84923368046     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2015.02.032     Document Type: Article
Times cited : (135)

References (44)
  • 1
    • 84865557377 scopus 로고    scopus 로고
    • Very short-term wind speed forecasting with Bayesian structural break model
    • Jiang Y., Song Z., Kusiak A. Very short-term wind speed forecasting with Bayesian structural break model. Renew Energy 2013, 50:637-647. 10.1016/j.renene.2012.07.041.
    • (2013) Renew Energy , vol.50 , pp. 637-647
    • Jiang, Y.1    Song, Z.2    Kusiak, A.3
  • 3
    • 34548170015 scopus 로고    scopus 로고
    • Recursive prediction for long term time series forecasting using advanced models
    • Herrera L.J., Pomares H., Rojas I., Guillén A., Prieto A., Valenzuela O. Recursive prediction for long term time series forecasting using advanced models. Neurocomputing 2007, 70:2870-2880. 10.1016/j.neucom.2006.04.015.
    • (2007) Neurocomputing , vol.70 , pp. 2870-2880
    • Herrera, L.J.1    Pomares, H.2    Rojas, I.3    Guillén, A.4    Prieto, A.5    Valenzuela, O.6
  • 5
    • 34548170754 scopus 로고    scopus 로고
    • Methodology for long-term prediction of time series
    • Sorjamaa A., Hao J., Reyhani N., Ji Y., Lendasse A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70:2861-2869. 10.1016/j.neucom.2006.06.015.
    • (2007) Neurocomputing , vol.70 , pp. 2861-2869
    • Sorjamaa, A.1    Hao, J.2    Reyhani, N.3    Ji, Y.4    Lendasse, A.5
  • 6
    • 51749116088 scopus 로고    scopus 로고
    • Time Series Prediction using DirRec Strategy
    • Sorjamaa A, Lendasse A. Time Series Prediction using DirRec Strategy 2006. p. 26-8.
    • (2006) , pp. 26-28
    • Sorjamaa, A.1    Lendasse, A.2
  • 8
    • 78649814612 scopus 로고    scopus 로고
    • Prediction of wind speed time series using modified Taylor Kriging method
    • Liu H., Shi J., Erdem E. Prediction of wind speed time series using modified Taylor Kriging method. Energy 2010, 35:4870-4879. 10.1016/j.energy.2010.09.001.
    • (2010) Energy , vol.35 , pp. 4870-4879
    • Liu, H.1    Shi, J.2    Erdem, E.3
  • 9
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • Torres J.L., García a., De Blas M., De Francisco a. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol Energy 2005, 79:65-77. 10.1016/j.solener.2004.09.013.
    • (2005) Sol Energy , vol.79 , pp. 65-77
    • Torres, J.L.1    García, A.2    De Blas, M.3    De Francisco, A.4
  • 10
    • 33947151102 scopus 로고    scopus 로고
    • Wind speed forecasting in the South Coast of Oaxaca, Mexico
    • Cadenas E., Rivera W. Wind speed forecasting in the South Coast of Oaxaca, Mexico. Renew Energy 2007, 32:2116-2128. 10.1016/j.renene.2006.10.005.
    • (2007) Renew Energy , vol.32 , pp. 2116-2128
    • Cadenas, E.1    Rivera, W.2
  • 12
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew Energy 2000, 21:23-35.
    • (2000) Renew Energy , vol.21 , pp. 23-35
    • Sfetsos, A.1
  • 13
    • 0343219322 scopus 로고    scopus 로고
    • A fuzzy logic and neural network based wind power model
    • In: Eur wind energy conf;
    • Kariniotakis G, Stavrakakis G, Nogaret E. A fuzzy logic and neural network based wind power model. In: Eur wind energy conf; 1996. p. 596-9.
    • (1996) , pp. 596-599
    • Kariniotakis, G.1    Stavrakakis, G.2    Nogaret, E.3
  • 14
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87:2313-2320. 10.1016/j.apenergy.2009.12.013.
    • (2010) Appl Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 15
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: a new artificial neural network-Markov chain model
    • Pourmousavi Kani S.A., Ardehali M.M. Very short-term wind speed prediction: a new artificial neural network-Markov chain model. Energy Convers Manage 2011, 52:738-745. 10.1016/j.enconman.2010.07.05.
    • (2011) Energy Convers Manage , vol.52 , pp. 738-745
    • Pourmousavi Kani, S.A.1    Ardehali, M.M.2
  • 16
    • 77955279506 scopus 로고    scopus 로고
    • Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
    • Hong Y.-Y., Chang H.-L., Chiu C.-S. Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 2010, 35:3870-3876. 10.1016/j.energy.2010.05.041.
    • (2010) Energy , vol.35 , pp. 3870-3876
    • Hong, Y.-Y.1    Chang, H.-L.2    Chiu, C.-S.3
  • 17
    • 84892960976 scopus 로고    scopus 로고
    • Current status and future advances for wind speed and power forecasting
    • Jung J., Broadwater R.P. Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 2014, 31:762-777. 10.1016/j.rser.2013.12.054.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 762-777
    • Jung, J.1    Broadwater, R.P.2
  • 20
    • 78149285758 scopus 로고    scopus 로고
    • A new approach to discovering the causal relationship between meteorological patterns and PM10 exceedances
    • Sfetsos A., Vlachogiannis D. A new approach to discovering the causal relationship between meteorological patterns and PM10 exceedances. Atmos Res 2010, 98:500-511. 10.1016/j.atmosres.2010.08.021.
    • (2010) Atmos Res , vol.98 , pp. 500-511
    • Sfetsos, A.1    Vlachogiannis, D.2
  • 21
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill, Inc., New York (NY), USA, n.d
    • Mitchell T.M. Machine LEARNING 1997, McGraw-Hill, Inc., New York (NY), USA, n.d.
    • (1997) Machine LEARNING
    • Mitchell, T.M.1
  • 22
    • 84901603894 scopus 로고    scopus 로고
    • Multi-step prediction of time series with random missing data
    • Wu X., Wang Y., Mao J., Du Z., Li C. Multi-step prediction of time series with random missing data. Appl Math Model 2014, 38:3512-3522. 10.1016/j.apm.2013.11.029.
    • (2014) Appl Math Model , vol.38 , pp. 3512-3522
    • Wu, X.1    Wang, Y.2    Mao, J.3    Du, Z.4    Li, C.5
  • 23
    • 67349200040 scopus 로고    scopus 로고
    • Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm
    • Mirzaee H. Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm. Chaos, Solitons Fractals 2009, 41:1975-1979. 10.1016/j.chaos.2008.08.016.
    • (2009) Chaos, Solitons Fractals , vol.41 , pp. 1975-1979
    • Mirzaee, H.1
  • 24
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu H., Tian H.Q., Li Y.F. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 2012, 98:415-424. 10.1016/j.apenergy.2012.04.001.
    • (2012) Appl Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 26
    • 83655163862 scopus 로고    scopus 로고
    • Extended and Unscented Kalman filtering based feedforward neural networks for time series prediction
    • Wu X., Wang Y. Extended and Unscented Kalman filtering based feedforward neural networks for time series prediction. Appl Math Model 2012, 36:1123-1131. 10.1016/j.apm.2011.07.052.
    • (2012) Appl Math Model , vol.36 , pp. 1123-1131
    • Wu, X.1    Wang, Y.2
  • 27
    • 84876135021 scopus 로고    scopus 로고
    • Research on chaotic time series prediction based on K-entropy and RBF neural networks
    • Yan X., Ma J. Research on chaotic time series prediction based on K-entropy and RBF neural networks. J Syst Sci Inf 2006.
    • (2006) J Syst Sci Inf
    • Yan, X.1    Ma, J.2
  • 28
    • 35248838920 scopus 로고    scopus 로고
    • Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization
    • Guerra F.A., Coelho L dos S. Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos, Solitons Fractals 2008, 35:967-979. 10.1016/j.chaos.2006.05.077.
    • (2008) Chaos, Solitons Fractals , vol.35 , pp. 967-979
    • Guerra, F.A.1    Coelho L. dos, S.2
  • 29
    • 43649096310 scopus 로고    scopus 로고
    • Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
    • Qian-Li M., Qi-Lun Z., Hong P., Tan-Wei Z., Jiang-Wei Q. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network. Chinese Phys B 2008, 17:536-542. 10.1088/1674-1056/17/2/031.
    • (2008) Chinese Phys B , vol.17 , pp. 536-542
    • Qian-Li, M.1    Qi-Lun, Z.2    Hong, P.3    Tan-Wei, Z.4    Jiang-Wei, Q.5
  • 30
    • 84879431382 scopus 로고    scopus 로고
    • Reinforced recurrent neural networks for multi-step-ahead flood forecasts
    • Chen P.-A., Chang L.-C., Chang F.-J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts. J Hydrol 2013, 497:71-79. 10.1016/j.jhydrol.2013.05.038.
    • (2013) J Hydrol , vol.497 , pp. 71-79
    • Chen, P.-A.1    Chang, L.-C.2    Chang, F.-J.3
  • 31
    • 78349305293 scopus 로고    scopus 로고
    • Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory
    • Sun Y., Babovic V., Chan E.S. Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory. J Hydrol 2010, 395:109-116. 10.1016/j.jhydrol.2010.10.020.
    • (2010) J Hydrol , vol.395 , pp. 109-116
    • Sun, Y.1    Babovic, V.2    Chan, E.S.3
  • 32
    • 80655146998 scopus 로고    scopus 로고
    • A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
    • Wang S., Yu L., Tang L., Wang S. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy 2011, 36:6542-6554. 10.1016/j.energy.2011.09.010.
    • (2011) Energy , vol.36 , pp. 6542-6554
    • Wang, S.1    Yu, L.2    Tang, L.3    Wang, S.4
  • 33
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang GP. Time series forecasting using a hybrid ARIMA and neural network model, vol. 50; 2003. p. 159-75.
    • (2003) , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 34
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
    • Liu H., Tian H.-Q., Pan D.-F., Li Y.-F. Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl Energy 2013, 107:191-208. 10.1016/j.apenergy.2013.02.002.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.-Q.2    Pan, D.-F.3    Li, Y.-F.4
  • 35
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Z., Zhao W., Lu H., Wang J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 2012, 37:241-249. 10.1016/j.renene.2011.06.023.
    • (2012) Renew Energy , vol.37 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 36
    • 0036689682 scopus 로고    scopus 로고
    • A modified Volterra series approach for nonlinear dynamic systems modeling
    • Mirri D, Iuculano G, Filicori F, Pasini G, Vannini G, Gualtieri GP. A modified Volterra series approach for nonlinear dynamic systems modeling, vol. 49; 2002. p. 1118-28.
    • (2002) , vol.49 , pp. 1118-1128
    • Mirri, D.1    Iuculano, G.2    Filicori, F.3    Pasini, G.4    Vannini, G.5    Gualtieri, G.P.6
  • 37
    • 0032147127 scopus 로고    scopus 로고
    • Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle
    • Hunt K.J., Munih M., Donaldson N.N., Barr F.M. Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle. IEEE Trans Biomed Eng 1998, 45:998-1009. 10.1109/10.704868.
    • (1998) IEEE Trans Biomed Eng , vol.45 , pp. 998-1009
    • Hunt, K.J.1    Munih, M.2    Donaldson, N.N.3    Barr, F.M.4
  • 38
    • 64849097238 scopus 로고    scopus 로고
    • Modelling video packet transmission in IP networks using Hammerstein series and higher order cumulants
    • Antari J., Zeroual A. Modelling video packet transmission in IP networks using Hammerstein series and higher order cumulants. AEU - Int J Electron Commun 2009, 63:406-411. 10.1016/j.aeue.2008.02.017.
    • (2009) AEU - Int J Electron Commun , vol.63 , pp. 406-411
    • Antari, J.1    Zeroual, A.2
  • 40
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 2009, 34:1388-1393. 10.1016/j.renene.2008.09.006.
    • (2009) Renew Energy , vol.34 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 41
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
    • Cadenas E., Rivera W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renew Energy 2009, 34:274-278. 10.1016/j.renene.2008.03.014.
    • (2009) Renew Energy , vol.34 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 42
    • 71449124139 scopus 로고    scopus 로고
    • A new identification method for Wiener and Hammerstein Systems
    • fakultät karlsruhe;
    • Guo F. A new identification method for Wiener and Hammerstein Systems. fakultät karlsruhe; 2004.
    • , vol.2004
    • Guo, F.1
  • 43
    • 0037210278 scopus 로고    scopus 로고
    • Blind identification of second order Hammerstein series
    • Koukoulas P., Kalouptsidis N. Blind identification of second order Hammerstein series. Signal Process 2003, 83:213-234.
    • (2003) Signal Process , vol.83 , pp. 213-234
    • Koukoulas, P.1    Kalouptsidis, N.2
  • 44
    • 84979489263 scopus 로고
    • Short range prediction of wind speeds: a system-theoretic approach
    • Geerts H. Short range prediction of wind speeds: a system-theoretic approach; 1984.
    • (1984)
    • Geerts, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.