메뉴 건너뛰기




Volumn 38, Issue 14, 2014, Pages 3512-3522

Multi-step prediction of time series with random missing data

Author keywords

Multi step prediction; Multilayer perceptron ANN; Nonlinear filters; Random missing data

Indexed keywords

NEURAL NETWORKS; NONLINEAR FILTERING; TIME SERIES;

EID: 84901603894     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2013.11.029     Document Type: Article
Times cited : (19)

References (35)
  • 1
    • 84979455306 scopus 로고
    • Some advances in non-linear and adaptive modeling in time-series
    • Tiao G.C., Tsay R.S. Some advances in non-linear and adaptive modeling in time-series. J. Forecasting 1994, 13:109-131.
    • (1994) J. Forecasting , vol.13 , pp. 109-131
    • Tiao, G.C.1    Tsay, R.S.2
  • 4
    • 77956724793 scopus 로고    scopus 로고
    • An empirical comparison of machine learning models for time series forecasting
    • Ahmed N.K., Atiya A.F., El Gayar N., El-Shishiny H. An empirical comparison of machine learning models for time series forecasting. Economet. Rev. 2010, 29:594-621.
    • (2010) Economet. Rev. , vol.29 , pp. 594-621
    • Ahmed, N.K.1    Atiya, A.F.2    El Gayar, N.3    El-Shishiny, H.4
  • 6
    • 67349200040 scopus 로고    scopus 로고
    • Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm
    • Mirzaee H. Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm. Chaos Solitons Fractals 2009, 41:1975-1979.
    • (2009) Chaos Solitons Fractals , vol.41 , pp. 1975-1979
    • Mirzaee, H.1
  • 7
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu H., Tian H., Li Y. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98:415-424.
    • (2012) Appl. Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.2    Li, Y.3
  • 9
    • 83655163862 scopus 로고    scopus 로고
    • Extended and unscented Kalman filtering based feedforward neural networks for time series prediction
    • Wu X., Wang Y. Extended and unscented Kalman filtering based feedforward neural networks for time series prediction. Appl. Math. Model. 2012, 36:1123-1131.
    • (2012) Appl. Math. Model. , vol.36 , pp. 1123-1131
    • Wu, X.1    Wang, Y.2
  • 10
    • 84876135021 scopus 로고    scopus 로고
    • Research on chaotic time series prediction based on K-entropy and RBF neural networks
    • Yan X., Ma J.H. Research on chaotic time series prediction based on K-entropy and RBF neural networks. J. Syst. Sci. Inf. 2006, 14:741-748.
    • (2006) J. Syst. Sci. Inf. , vol.14 , pp. 741-748
    • Yan, X.1    Ma, J.H.2
  • 11
    • 35248838920 scopus 로고    scopus 로고
    • Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization
    • Fábio A.G., Leandro S.C. Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos Solitons Fractals 2008, 35:967-979.
    • (2008) Chaos Solitons Fractals , vol.35 , pp. 967-979
    • Fábio, A.G.1    Leandro, S.C.2
  • 12
    • 43649096310 scopus 로고    scopus 로고
    • Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
    • Ma Q.L., Peng H., Qin J.W., Zheng Q.L., Zhong T.W. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network. Chin. Phys. B 2008, 17:536-542.
    • (2008) Chin. Phys. B , vol.17 , pp. 536-542
    • Ma, Q.L.1    Peng, H.2    Qin, J.W.3    Zheng, Q.L.4    Zhong, T.W.5
  • 13
    • 84879431382 scopus 로고    scopus 로고
    • Reinforced recurrent neural networks for multi-step-ahead Flood forecasts
    • Chen P.-A., Chang L.-C., Chang F.-J. Reinforced recurrent neural networks for multi-step-ahead Flood forecasts. J. Hydrol. 2013, 497:71-79.
    • (2013) J. Hydrol. , vol.497 , pp. 71-79
    • Chen, P.-A.1    Chang, L.-C.2    Chang, F.-J.3
  • 14
    • 78349305293 scopus 로고    scopus 로고
    • Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory
    • Sun Y., Babovic V., Chan E.S. Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory. J. Hydrol. 2010, 395:109-116.
    • (2010) J. Hydrol. , vol.395 , pp. 109-116
    • Sun, Y.1    Babovic, V.2    Chan, E.S.3
  • 15
    • 80655146998 scopus 로고    scopus 로고
    • A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
    • Wang S., Yu L., Tang L., Wang S. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy 2011, 36:6542-6554.
    • (2011) Energy , vol.36 , pp. 6542-6554
    • Wang, S.1    Yu, L.2    Tang, L.3    Wang, S.4
  • 16
    • 32044452684 scopus 로고    scopus 로고
    • Time-series analysis if data are randomly missing
    • Broersen P.M.T., Bos R. Time-series analysis if data are randomly missing. IEEE Trans. Instrum. Meas. 2006, 55:79-84.
    • (2006) IEEE Trans. Instrum. Meas. , vol.55 , pp. 79-84
    • Broersen, P.M.T.1    Bos, R.2
  • 17
    • 33750013519 scopus 로고    scopus 로고
    • Single imputation method of missing values in environmental pollution data sets
    • Plaia A., Bondì A.L. Single imputation method of missing values in environmental pollution data sets. Atmos. Environ. 2006, 40:7316-7330.
    • (2006) Atmos. Environ. , vol.40 , pp. 7316-7330
    • Plaia, A.1    Bondì, A.L.2
  • 18
    • 34250853481 scopus 로고    scopus 로고
    • Effect of missing values in estimation of mean of auto-correlated measurement series
    • Paakkunainen M., Kilpeläinen J., Reinikainen S.-P., Minkkinen P. Effect of missing values in estimation of mean of auto-correlated measurement series. Anal. Chim. Acta 2007, 595:209-215.
    • (2007) Anal. Chim. Acta , vol.595 , pp. 209-215
    • Paakkunainen, M.1    Kilpeläinen, J.2    Reinikainen, S.-P.3    Minkkinen, P.4
  • 19
    • 34250818666 scopus 로고    scopus 로고
    • Comparison of neural network methods for infilling missing daily weather records
    • Coulibaly P., Evora N.D. Comparison of neural network methods for infilling missing daily weather records. J. Hydrol. 2007, 341:27-41.
    • (2007) J. Hydrol. , vol.341 , pp. 27-41
    • Coulibaly, P.1    Evora, N.D.2
  • 20
    • 34147113862 scopus 로고    scopus 로고
    • Imputing incomplete time-series data based on varied-window similarity measure of data sequences
    • Chiewchanwattana S., Lursinsap C., Chu C.-H.H. Imputing incomplete time-series data based on varied-window similarity measure of data sequences. Pattern Recogn. Lett. 2007, 28:1091-1103.
    • (2007) Pattern Recogn. Lett. , vol.28 , pp. 1091-1103
    • Chiewchanwattana, S.1    Lursinsap, C.2    Chu, C.-H.H.3
  • 22
    • 78149406829 scopus 로고    scopus 로고
    • Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation
    • Kim J.-W., Pachepsky Y.A. Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. J. Hydrol. 2010, 394:305-314.
    • (2010) J. Hydrol. , vol.394 , pp. 305-314
    • Kim, J.-W.1    Pachepsky, Y.A.2
  • 23
    • 79952489002 scopus 로고    scopus 로고
    • Evaluation of statistical methods for infilling missing values in high-resolution soil moisture data
    • Dumedah G., Coulibaly P. Evaluation of statistical methods for infilling missing values in high-resolution soil moisture data. J. Hydrol. 2011, 400:95-102.
    • (2011) J. Hydrol. , vol.400 , pp. 95-102
    • Dumedah, G.1    Coulibaly, P.2
  • 24
    • 84869869112 scopus 로고    scopus 로고
    • Non-parametric regression for space-time forecasting under missing data
    • Haworth J., Cheng T. Non-parametric regression for space-time forecasting under missing data. Comput. Environ. Urban 2012, 36:538-550.
    • (2012) Comput. Environ. Urban , vol.36 , pp. 538-550
    • Haworth, J.1    Cheng, T.2
  • 25
    • 84865031060 scopus 로고    scopus 로고
    • Robust diagnosis of discrete event systems against intermittent loss of observations
    • Carvalho L.K., Basilio J.C., Moreira M.V. Robust diagnosis of discrete event systems against intermittent loss of observations. Automatica 2012, 48:2068-2078.
    • (2012) Automatica , vol.48 , pp. 2068-2078
    • Carvalho, L.K.1    Basilio, J.C.2    Moreira, M.V.3
  • 26
    • 84876801331 scopus 로고    scopus 로고
    • Multi-regime non-Gaussian data filling for incomplete ocean datasets
    • Aretxabaleta A.L., Smith K.W. Multi-regime non-Gaussian data filling for incomplete ocean datasets. J. Mar. Syst. 2013, 119-120:11-18.
    • (2013) J. Mar. Syst. , pp. 11-18
    • Aretxabaleta, A.L.1    Smith, K.W.2
  • 27
    • 56349142153 scopus 로고    scopus 로고
    • GEKF, GUKF and GGPF based prediction of chaotic time-series with additive and multiplicative noises
    • Wu X.-D., Song Z.-H. GEKF, GUKF and GGPF based prediction of chaotic time-series with additive and multiplicative noises. Chin. Phys. B 2008, 17:3241-3246.
    • (2008) Chin. Phys. B , vol.17 , pp. 3241-3246
    • Wu, X.-D.1    Song, Z.-H.2
  • 28
    • 79958720200 scopus 로고    scopus 로고
    • Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data
    • Wu X.-D., Wang Y.-N., Liu W.-T., Zhu Z.-Y. Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data. Chin. Phys. B 2011, 20:069201.
    • (2011) Chin. Phys. B , vol.20 , pp. 069201
    • Wu, X.-D.1    Wang, Y.-N.2    Liu, W.-T.3    Zhu, Z.-Y.4
  • 29
    • 79957678221 scopus 로고    scopus 로고
    • Maximum likelihood estimation for dynamic factor models with missing data
    • Jungbacker B., Koopman S.J., van der Wel M. Maximum likelihood estimation for dynamic factor models with missing data. J. Econ. Dyn. Control 2011, 35:1358-1368.
    • (2011) J. Econ. Dyn. Control , vol.35 , pp. 1358-1368
    • Jungbacker, B.1    Koopman, S.J.2    van der Wel, M.3
  • 31
    • 21244437999 scopus 로고    scopus 로고
    • Unscented filtering and nonlinear estimation
    • Julier S.J., Uhlmann J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92:401-422.
    • (2004) Proc. IEEE , vol.92 , pp. 401-422
    • Julier, S.J.1    Uhlmann, J.K.2
  • 33
    • 33845414526 scopus 로고    scopus 로고
    • Particle-filter-based estimation and prediction of chaotic states
    • Zhang B., Chen M.Y., Zhou D.H., Li Z.X. Particle-filter-based estimation and prediction of chaotic states. Chaos Solitons Fractals 2007, 32:1491-1498.
    • (2007) Chaos Solitons Fractals , vol.32 , pp. 1491-1498
    • Zhang, B.1    Chen, M.Y.2    Zhou, D.H.3    Li, Z.X.4
  • 35
    • 0017714604 scopus 로고
    • Oscillation and chaos in a physiological control system
    • Mackey M.C., Glass L. Oscillation and chaos in a physiological control system. Science 1977, 197:287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.