메뉴 건너뛰기




Volumn 81, Issue , 2015, Pages 28-50

Advances of thermal conductivity models of nanoscale silica aerogel insulation material

Author keywords

Effective thermal conductivity; Gaseous heat transfer; Nanoporous silica aerogel insulation material; Radiative heat transfer; Solid heat transfer

Indexed keywords

AEROGELS; HEAT TRANSFER; INSULATING MATERIALS; NANOSTRUCTURED MATERIALS; NANOTECHNOLOGY; PHASE INTERFACES; SILICA; SILICA GEL; THERMAL CONDUCTIVITY OF GASES; THERMAL INSULATION;

EID: 84923360198     PISSN: 13594311     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.applthermaleng.2015.02.013     Document Type: Review
Times cited : (351)

References (112)
  • 2
  • 3
    • 33749343201 scopus 로고    scopus 로고
    • Aerogel: Space exploration applications
    • S. Jones Aerogel: space exploration applications J. Sol-Gel Sci. Technol. 40 2006 351 357
    • (2006) J. Sol-Gel Sci. Technol. , vol.40 , pp. 351-357
    • Jones, S.1
  • 4
    • 33244466556 scopus 로고    scopus 로고
    • Aerogel insulation systems for space launch applications
    • J.E. Fesmire Aerogel insulation systems for space launch applications Cryogenics 46 2006 111 117
    • (2006) Cryogenics , vol.46 , pp. 111-117
    • Fesmire, J.E.1
  • 7
    • 79951518322 scopus 로고    scopus 로고
    • Aerogel insulation for building applications: A state-of-the-art review
    • R. Baetens, B.P. Jelle, and A. Gustavsen Aerogel insulation for building applications: a state-of-the-art review Energy Build. 43 2011 761 769
    • (2011) Energy Build. , vol.43 , pp. 761-769
    • Baetens, R.1    Jelle, B.P.2    Gustavsen, A.3
  • 9
    • 84907481735 scopus 로고    scopus 로고
    • Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications
    • A. Saboktakin, and M.R. Saboktakin Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications Int. J. Biol. Macromol. 72 2015 230 234
    • (2015) Int. J. Biol. Macromol. , vol.72 , pp. 230-234
    • Saboktakin, A.1    Saboktakin, M.R.2
  • 11
    • 84897469443 scopus 로고    scopus 로고
    • Toward aerogel based thermal superinsulation in buildings: A comprehensive review
    • E. Cuce, P.M. Cuce, C.J. Wood, and S.B. Riffat Toward aerogel based thermal superinsulation in buildings: a comprehensive review Renew. Sustain. Energy Rev. 34 2014 273 299
    • (2014) Renew. Sustain. Energy Rev. , vol.34 , pp. 273-299
    • Cuce, E.1    Cuce, P.M.2    Wood, C.J.3    Riffat, S.B.4
  • 13
    • 0028392378 scopus 로고
    • Thermal properties of organic and inorganic aerogels
    • L.W. Hrubesh, and R.W. Pekala Thermal properties of organic and inorganic aerogels J. Mater. Res. 9 1994 731 738
    • (1994) J. Mater. Res. , vol.9 , pp. 731-738
    • Hrubesh, L.W.1    Pekala, R.W.2
  • 14
    • 33747377230 scopus 로고    scopus 로고
    • Structure and thermal conductivity of silica aerogels from computer simulations
    • B.S. Good Structure and thermal conductivity of silica aerogels from computer simulations Hydrogen Cycle-generation, Storage and Fuel Cells vol. 885 2006 227 232
    • (2006) Hydrogen Cycle-generation, Storage and Fuel Cells , vol.885 VOL. , pp. 227-232
    • Good, B.S.1
  • 16
    • 78349290763 scopus 로고    scopus 로고
    • Heat transfer in nanoparticle suspensions: Modeling the thermal conductivity of nanofluids
    • P. Warrier, Y. Yuan, M.P. Beck, and A.S. Teja Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids AIChE J. 56 2010 3243 3256
    • (2010) AIChE J. , vol.56 , pp. 3243-3256
    • Warrier, P.1    Yuan, Y.2    Beck, M.P.3    Teja, A.S.4
  • 17
    • 84877992252 scopus 로고    scopus 로고
    • Effective thermal conductivity of the solid backbone of aerogel
    • C. Bi, and G.H. Tang Effective thermal conductivity of the solid backbone of aerogel Int. J. Heat Mass Transf. 64 2013 452 456
    • (2013) Int. J. Heat Mass Transf. , vol.64 , pp. 452-456
    • Bi, C.1    Tang, G.H.2
  • 19
    • 85013239539 scopus 로고
    • Theoretical modeling of carbon content to minimize heat transfer in silica aerogel
    • S.Q. Zeng, A. Hunt, and R. Greif Theoretical modeling of carbon content to minimize heat transfer in silica aerogel J. Non-Cryst. Solids 186 1995 271 277
    • (1995) J. Non-Cryst. Solids , vol.186 , pp. 271-277
    • Zeng, S.Q.1    Hunt, A.2    Greif, R.3
  • 20
    • 84864326498 scopus 로고    scopus 로고
    • Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels
    • J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, and B.-X. Wang Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels J. Nanopart. Res. 14 2012 1 15
    • (2012) J. Nanopart. Res. , vol.14 , pp. 1-15
    • Zhao, J.-J.1    Duan, Y.-Y.2    Wang, X.-D.3    Wang, B.-X.4
  • 21
    • 34247134445 scopus 로고    scopus 로고
    • Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity
    • G. Reichenauer, U. Heinemann, and H.P. Ebert Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity Colloids Surf. A Physicochem. Eng. Asp. 300 2007 204 210
    • (2007) Colloids Surf. A Physicochem. Eng. Asp. , vol.300 , pp. 204-210
    • Reichenauer, G.1    Heinemann, U.2    Ebert, H.P.3
  • 22
    • 70349739176 scopus 로고    scopus 로고
    • Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm
    • K. Swimm, G. Reichenauer, S. Vidi, and H.P. Ebert Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm Int. J. Thermophys. 30 2009 1329 1342
    • (2009) Int. J. Thermophys. , vol.30 , pp. 1329-1342
    • Swimm, K.1    Reichenauer, G.2    Vidi, S.3    Ebert, H.P.4
  • 23
    • 84906689054 scopus 로고    scopus 로고
    • Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation
    • C. Bi, G.H. Tang, Z.J. Hu, H.L. Yang, and J.N. Li Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation Int. J. Heat Mass Transf. 79 2014 126 136
    • (2014) Int. J. Heat Mass Transf. , vol.79 , pp. 126-136
    • Bi, C.1    Tang, G.H.2    Hu, Z.J.3    Yang, H.L.4    Li, J.N.5
  • 24
    • 0024680975 scopus 로고
    • Aerogels and related porous materials
    • H.D. Gesser, and P.C. Goswami Aerogels and related porous materials Chem. Rev. 89 1989 765 788
    • (1989) Chem. Rev. , vol.89 , pp. 765-788
    • Gesser, H.D.1    Goswami, P.C.2
  • 25
    • 0032640956 scopus 로고    scopus 로고
    • Lightweight supper insulating aerogel/tile composite have potential industrial use
    • S. White, and D. Rask Lightweight supper insulating aerogel/tile composite have potential industrial use Mater. Technol. 14 1999 13 17
    • (1999) Mater. Technol. , vol.14 , pp. 13-17
    • White, S.1    Rask, D.2
  • 32
    • 84871776885 scopus 로고    scopus 로고
    • Radiative heat transfer study on silica aerogel and its composite insulation materials
    • G. Wei, Y. Liu, X. Zhang, and X. Du Radiative heat transfer study on silica aerogel and its composite insulation materials J. Non-Cryst. Solids 362 2013 231 236
    • (2013) J. Non-Cryst. Solids , vol.362 , pp. 231-236
    • Wei, G.1    Liu, Y.2    Zhang, X.3    Du, X.4
  • 33
    • 79953048242 scopus 로고    scopus 로고
    • Thermal conductivities study on silica aerogel and its composite insulation materials
    • G. Wei, Y. Liu, X. Zhang, F. Yu, and X. Du Thermal conductivities study on silica aerogel and its composite insulation materials Int. J. Heat Mass Transf. 54 2011 2355 2366
    • (2011) Int. J. Heat Mass Transf. , vol.54 , pp. 2355-2366
    • Wei, G.1    Liu, Y.2    Zhang, X.3    Yu, F.4    Du, X.5
  • 34
    • 36048970703 scopus 로고    scopus 로고
    • Thermal conductivity of xonotlite insulation material
    • G. Wei, X. Zhang, and F. Yu Thermal conductivity of xonotlite insulation material Int. J. Thermophys. 28 2007 1718 1729
    • (2007) Int. J. Thermophys. , vol.28 , pp. 1718-1729
    • Wei, G.1    Zhang, X.2    Yu, F.3
  • 35
    • 77949263654 scopus 로고    scopus 로고
    • Structural and thermal study of highly porous nanocomposite SiO2-based aerogels
    • H. Zhang, Y. Qiao, X. Zhang, and S. Fang Structural and thermal study of highly porous nanocomposite SiO2-based aerogels J. Non-Cryst. Solids 356 2010 879 883
    • (2010) J. Non-Cryst. Solids , vol.356 , pp. 879-883
    • Zhang, H.1    Qiao, Y.2    Zhang, X.3    Fang, S.4
  • 39
    • 84871802287 scopus 로고    scopus 로고
    • Theoretical study on thermal conductivities of silica aerogel composite insulating material
    • T. Xie, Y.-L. He, and Z.-J. Hu Theoretical study on thermal conductivities of silica aerogel composite insulating material Int. J. Heat Mass Transf. 58 2013 540 552
    • (2013) Int. J. Heat Mass Transf. , vol.58 , pp. 540-552
    • Xie, T.1    He, Y.-L.2    Hu, Z.-J.3
  • 42
    • 0038199072 scopus 로고
    • The relation between heat conductivity and structure in silica aerogel
    • S.S. Kistler The relation between heat conductivity and structure in silica aerogel J. Phys. Chem. 39 1935 79 86
    • (1935) J. Phys. Chem. , vol.39 , pp. 79-86
    • Kistler, S.S.1
  • 44
    • 84862815818 scopus 로고    scopus 로고
    • A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure
    • J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, and B.-X. Wang A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure J. Non-Cryst. Solids 358 2012 1287 1297
    • (2012) J. Non-Cryst. Solids , vol.358 , pp. 1287-1297
    • Zhao, J.-J.1    Duan, Y.-Y.2    Wang, X.-D.3    Wang, B.-X.4
  • 45
    • 0036495370 scopus 로고    scopus 로고
    • Determination of mesopore size of aerogels from thermal conductivity measurements
    • O.-J. Lee, K.-H. Lee, T. Jin Yim, S. Young Kim, and K.-P. Yoo Determination of mesopore size of aerogels from thermal conductivity measurements J. Non-Cryst. Solids 298 2002 287 292
    • (2002) J. Non-Cryst. Solids , vol.298 , pp. 287-292
    • Lee, O.-J.1    Lee, K.-H.2    Jin Yim, T.3    Young Kim, S.4    Yoo, K.-P.5
  • 46
    • 84894823295 scopus 로고    scopus 로고
    • Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity
    • C. Bi, G.H. Tang, and Z.J. Hu Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity Int. J. Heat Mass Transf. 73 2014 103 109
    • (2014) Int. J. Heat Mass Transf. , vol.73 , pp. 103-109
    • Bi, C.1    Tang, G.H.2    Hu, Z.J.3
  • 47
    • 84862828247 scopus 로고    scopus 로고
    • An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels
    • J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, and B.-X. Wang An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels J. Non-Cryst. Solids 358 2012 1303 1312
    • (2012) J. Non-Cryst. Solids , vol.358 , pp. 1303-1312
    • Zhao, J.-J.1    Duan, Y.-Y.2    Wang, X.-D.3    Wang, B.-X.4
  • 48
    • 84927805828 scopus 로고    scopus 로고
    • Effective structure of aerogels and decomposed contributions of its thermal conductivity
    • D. Dan, H. Zhang, and W.-Q. Tao Effective structure of aerogels and decomposed contributions of its thermal conductivity Appl. Therm. Eng. 72 2014 2 9
    • (2014) Appl. Therm. Eng. , vol.72 , pp. 2-9
    • Dan, D.1    Zhang, H.2    Tao, W.-Q.3
  • 49
    • 70349748433 scopus 로고    scopus 로고
    • Thermal transport properties of functionally graded carbon aerogels
    • F. Hemberger, S. Weis, G. Reichenauer, and H.-P. Ebert Thermal transport properties of functionally graded carbon aerogels Int. J. Thermophys. 30 2009 1357 1371
    • (2009) Int. J. Thermophys. , vol.30 , pp. 1357-1371
    • Hemberger, F.1    Weis, S.2    Reichenauer, G.3    Ebert, H.-P.4
  • 50
    • 0029355105 scopus 로고
    • Mean free path and apparent thermal conductivity of a gas in a porous medium
    • S.Q. Zeng, A. Hunt, and R. Greif Mean free path and apparent thermal conductivity of a gas in a porous medium J. Heat Transf. 117 1995 758 761
    • (1995) J. Heat Transf. , vol.117 , pp. 758-761
    • Zeng, S.Q.1    Hunt, A.2    Greif, R.3
  • 51
    • 0029107520 scopus 로고
    • Geometric structure and thermal conductivity of porous medium silica aerogel
    • S.Q. Zeng, A. Hunt, and R. Greif Geometric structure and thermal conductivity of porous medium silica aerogel J. Heat Transf. 117 1995 1055 1058
    • (1995) J. Heat Transf. , vol.117 , pp. 1055-1058
    • Zeng, S.Q.1    Hunt, A.2    Greif, R.3
  • 52
    • 80052938234 scopus 로고    scopus 로고
    • Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials
    • G. Lu, X.-D. Wang, Y.-Y. Duan, and X.-W. Li Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials J. Non-Cryst. Solids 357 2011 3822 3829
    • (2011) J. Non-Cryst. Solids , vol.357 , pp. 3822-3829
    • Lu, G.1    Wang, X.-D.2    Duan, Y.-Y.3    Li, X.-W.4
  • 53
    • 66149148372 scopus 로고    scopus 로고
    • Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material
    • G. Wei, X. Zhang, and F. Yu Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material J. Therm. Sci. 18 2009 142 149
    • (2009) J. Therm. Sci. , vol.18 , pp. 142-149
    • Wei, G.1    Zhang, X.2    Yu, F.3
  • 54
    • 84869078800 scopus 로고    scopus 로고
    • Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution
    • C. Bi, G.H. Tang, and W.Q. Tao Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution J. Non-Cryst. Solids 358 2012 3124 3128
    • (2012) J. Non-Cryst. Solids , vol.358 , pp. 3124-3128
    • Bi, C.1    Tang, G.H.2    Tao, W.Q.3
  • 59
    • 0742285722 scopus 로고    scopus 로고
    • Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
    • C. Dames, and G. Chen Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires J. Appl. Phys. 95 2004 682 693
    • (2004) J. Appl. Phys. , vol.95 , pp. 682-693
    • Dames, C.1    Chen, G.2
  • 60
    • 0037392719 scopus 로고    scopus 로고
    • Phonon heat conduction in micro- and nano-core-shell structures with cylindrical and spherical geometries
    • T. Zeng, and W. Liu Phonon heat conduction in micro- and nano-core-shell structures with cylindrical and spherical geometries J. Appl. Phys. 93 2003 4163 4168
    • (2003) J. Appl. Phys. , vol.93 , pp. 4163-4168
    • Zeng, T.1    Liu, W.2
  • 61
    • 84887974506 scopus 로고    scopus 로고
    • Thermal conduction in nano-porous silicon thin film
    • G.H. Tang, C. Bi, and B. Fu Thermal conduction in nano-porous silicon thin film J. Appl. Phys. 114 2013 184302-1 184302-8
    • (2013) J. Appl. Phys. , vol.114 , pp. 1843021-1843028
    • Tang, G.H.1    Bi, C.2    Fu, B.3
  • 62
    • 84877837572 scopus 로고    scopus 로고
    • Modeling of phonon heat transfer in spherical segment of silica aerogel grains
    • Y.-F. Han, X.-L. Xia, H.-P. Tan, and H.-D. Liu Modeling of phonon heat transfer in spherical segment of silica aerogel grains Phys. B Condens. Matter 420 2013 58 63
    • (2013) Phys. B Condens. Matter , vol.420 , pp. 58-63
    • Han, Y.-F.1    Xia, X.-L.2    Tan, H.-P.3    Liu, H.-D.4
  • 63
    • 33845698285 scopus 로고    scopus 로고
    • Lattice Boltzmann modeling of subcontinuum energy transport in crystalline and amorphous microelectronic devices
    • R. Escobar, B. Smith, and C. Amon Lattice Boltzmann modeling of subcontinuum energy transport in crystalline and amorphous microelectronic devices J. Electron. Packag. 128 2006 115 124
    • (2006) J. Electron. Packag. , vol.128 , pp. 115-124
    • Escobar, R.1    Smith, B.2    Amon, C.3
  • 64
    • 32144433579 scopus 로고    scopus 로고
    • Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling
    • R.A. Escobar, S.S. Ghai, M.S. Jhon, and C.H. Amon Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling Int. J. Heat Mass Transf. 49 2006 97 107
    • (2006) Int. J. Heat Mass Transf. , vol.49 , pp. 97-107
    • Escobar, R.A.1    Ghai, S.S.2    Jhon, M.S.3    Amon, C.H.4
  • 65
    • 0030449421 scopus 로고    scopus 로고
    • Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles
    • G. Chen Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles J. Heat Transf. 118 1996 539 545
    • (1996) J. Heat Transf. , vol.118 , pp. 539-545
    • Chen, G.1
  • 66
    • 0037570726 scopus 로고    scopus 로고
    • A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
    • B.-X. Wang, L.-P. Zhou, and X.-F. Peng A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles Int. J. Heat Mass Transf. 46 2003 2665 2672
    • (2003) Int. J. Heat Mass Transf. , vol.46 , pp. 2665-2672
    • Wang, B.-X.1    Zhou, L.-P.2    Peng, X.-F.3
  • 67
    • 0035422243 scopus 로고    scopus 로고
    • Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
    • S. Mazumder, and A. Majumdar Monte Carlo study of phonon transport in solid thin films including dispersion and polarization J. Heat Transf. 123 2001 749 759
    • (2001) J. Heat Transf. , vol.123 , pp. 749-759
    • Mazumder, S.1    Majumdar, A.2
  • 68
    • 33644511446 scopus 로고    scopus 로고
    • Monte Carlo transient phonon transport in silicon and germanium at nanoscales
    • D. Lacroix, K. Joulain, and D. Lemonnier Monte Carlo transient phonon transport in silicon and germanium at nanoscales Phys. Rev. B 72 2005 064305
    • (2005) Phys. Rev. B , vol.72 , pp. 064305
    • Lacroix, D.1    Joulain, K.2    Lemonnier, D.3
  • 69
    • 41649094407 scopus 로고    scopus 로고
    • Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation
    • M.-S. Jeng, R. Yang, D. Song, and G. Chen Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation J. Heat Transf. 130 2008 042410 042411
    • (2008) J. Heat Transf. , vol.130 , pp. 042410-042411
    • Jeng, M.-S.1    Yang, R.2    Song, D.3    Chen, G.4
  • 72
    • 0029352972 scopus 로고
    • Approximate formulation for coupled conduction and radiation through a medium with arbitrary optical thickness
    • S.Q. Zeng, A.J. Hunt, R. Greif, and W. Cao Approximate formulation for coupled conduction and radiation through a medium with arbitrary optical thickness J. Heat Transf. 117 1995 797 799
    • (1995) J. Heat Transf. , vol.117 , pp. 797-799
    • Zeng, S.Q.1    Hunt, A.J.2    Greif, R.3    Cao, W.4
  • 74
    • 33645048115 scopus 로고
    • Correlation between structure and thermal conductivity of organic aerogels
    • X. Lu, R. Caps, J. Fricke, C.T. Alviso, and R.W. Pekala Correlation between structure and thermal conductivity of organic aerogels J. Non-Cryst. Solids 188 1995 226 234
    • (1995) J. Non-Cryst. Solids , vol.188 , pp. 226-234
    • Lu, X.1    Caps, R.2    Fricke, J.3    Alviso, C.T.4    Pekala, R.W.5
  • 75
    • 0033741031 scopus 로고    scopus 로고
    • Conduction and radiation heat transfer in high-porosity fiber thermal insulation
    • S.C. Lee, and G.R. Cunnington Conduction and radiation heat transfer in high-porosity fiber thermal insulation J. Thermophys. Heat Transf. 14 2000 121 136
    • (2000) J. Thermophys. Heat Transf. , vol.14 , pp. 121-136
    • Lee, S.C.1    Cunnington, G.R.2
  • 76
    • 84870351770 scopus 로고    scopus 로고
    • Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures
    • J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, and B.-X. Wang Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures J. Phys. D Appl. Phys. 46 2013 015304
    • (2013) J. Phys. D Appl. Phys. , vol.46 , pp. 015304
    • Zhao, J.-J.1    Duan, Y.-Y.2    Wang, X.-D.3    Wang, B.-X.4
  • 77
    • 84879079315 scopus 로고    scopus 로고
    • Radiative characteristics of opacifier-loaded silica aerogel composites
    • X.-D. Wang, D. Sun, Y.-Y. Duan, and Z.-J. Hu Radiative characteristics of opacifier-loaded silica aerogel composites J. Non-Cryst. Solids 375 2013 31 39
    • (2013) J. Non-Cryst. Solids , vol.375 , pp. 31-39
    • Wang, X.-D.1    Sun, D.2    Duan, Y.-Y.3    Hu, Z.-J.4
  • 78
    • 84890073174 scopus 로고    scopus 로고
    • Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures
    • H.-T. Yu, D. Liu, Y.-Y. Duan, and X.-D. Wang Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures Int. J. Heat Mass Transf. 70 2014 478 485
    • (2014) Int. J. Heat Mass Transf. , vol.70 , pp. 478-485
    • Yu, H.-T.1    Liu, D.2    Duan, Y.-Y.3    Wang, X.-D.4
  • 79
    • 84864873919 scopus 로고    scopus 로고
    • Numerical calculation of effective thermal conductivity for complex multiphase materials
    • T. Xie, Y.-L. He, and W.-Q. Tao Numerical calculation of effective thermal conductivity for complex multiphase materials Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys. 33 2012 1197 1200
    • (2012) Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys. , vol.33 , pp. 1197-1200
    • Xie, T.1    He, Y.-L.2    Tao, W.-Q.3
  • 80
    • 0032147759 scopus 로고    scopus 로고
    • The Monte Carlo method in radiative heat transfer
    • J.R. Howell The Monte Carlo method in radiative heat transfer J. Heat Transf. 120 1998 547 560
    • (1998) J. Heat Transf. , vol.120 , pp. 547-560
    • Howell, J.R.1
  • 84
    • 84898011860 scopus 로고    scopus 로고
    • The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators
    • G. Hayase, K. Kugimiya, M. Ogawa, Y. Kodera, K. Kanamori, and K. Nakanishi The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators J. Mater. Chem. A 2 2014 6525 6531
    • (2014) J. Mater. Chem. A , vol.2 , pp. 6525-6531
    • Hayase, G.1    Kugimiya, K.2    Ogawa, M.3    Kodera, Y.4    Kanamori, K.5    Nakanishi, K.6
  • 85
    • 79051469453 scopus 로고    scopus 로고
    • Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media
    • S. Spagnol, B. Lartigue, A. Trombe, and V. Gibiat Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media EPL (Europhys. Lett.) 78 2007 46005
    • (2007) EPL (Europhys. Lett.) , vol.78 , pp. 46005
    • Spagnol, S.1    Lartigue, B.2    Trombe, A.3    Gibiat, V.4
  • 88
  • 89
    • 33747768920 scopus 로고    scopus 로고
    • Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force
    • 021411
    • F. Pierce, C.M. Sorensen, and A. Chakrabarti Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force 021411 Phys. Rev. E 74 2006 021411 021418
    • (2006) Phys. Rev. e , vol.74 , pp. 021411-021418
    • Pierce, F.1    Sorensen, C.M.2    Chakrabarti, A.3
  • 90
    • 84876446341 scopus 로고    scopus 로고
    • Predictions of the effective thermal conductivity for aerogel-fiber composite insulation materials using lattice Boltzmann method
    • C. He, Y.-L. He, T. Xie, and Q. Liu Predictions of the effective thermal conductivity for aerogel-fiber composite insulation materials using lattice Boltzmann method Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys. 34 2013 742 745
    • (2013) Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys. , vol.34 , pp. 742-745
    • He, C.1    He, Y.-L.2    Xie, T.3    Liu, Q.4
  • 91
    • 62149085202 scopus 로고    scopus 로고
    • On the physical properties of apparent two-phase fractal porous media
    • B. Yu, J. Cai, and M. Zou On the physical properties of apparent two-phase fractal porous media Vadose Zone J. 8 2009 177 186
    • (2009) Vadose Zone J. , vol.8 , pp. 177-186
    • Yu, B.1    Cai, J.2    Zou, M.3
  • 93
    • 34548105988 scopus 로고    scopus 로고
    • Analysis of the effective thermal conductivity of fractal porous media
    • X. Huai, W. Wang, and Z. Li Analysis of the effective thermal conductivity of fractal porous media Appl. Therm. Eng. 27 2007 2815 2821
    • (2007) Appl. Therm. Eng. , vol.27 , pp. 2815-2821
    • Huai, X.1    Wang, W.2    Li, Z.3
  • 94
    • 84893969890 scopus 로고    scopus 로고
    • An intermingled fractal units model to evaluate pore size distribution influence on thermal conductivity values in porous materials
    • G. Pia, and U. Sanna An intermingled fractal units model to evaluate pore size distribution influence on thermal conductivity values in porous materials Appl. Therm. Eng. 65 2014 330 336
    • (2014) Appl. Therm. Eng. , vol.65 , pp. 330-336
    • Pia, G.1    Sanna, U.2
  • 95
    • 55249125647 scopus 로고    scopus 로고
    • Predictions of effective physical properties of complex multiphase materials
    • M. Wang, and N. Pan Predictions of effective physical properties of complex multiphase materials Mater. Sci. Eng. R Rep. 63 2008 1 30
    • (2008) Mater. Sci. Eng. R Rep. , vol.63 , pp. 1-30
    • Wang, M.1    Pan, N.2
  • 97
    • 0030195414 scopus 로고    scopus 로고
    • Radiative properties of fibrous insulations: Theory versus experiment
    • G.R. Cunnington, and S.C. Lee Radiative properties of fibrous insulations: theory versus experiment J. Thermophys. Heat Transf. 10 1996 460 466
    • (1996) J. Thermophys. Heat Transf. , vol.10 , pp. 460-466
    • Cunnington, G.R.1    Lee, S.C.2
  • 98
    • 84879889335 scopus 로고
    • Thermal characterization of carbon-opacified silica aerogels
    • D. Lee, P.C. Stevens, S.Q. Zeng, and A.J. Hunt Thermal characterization of carbon-opacified silica aerogels J. Non-Cryst. Solids 186 1995 285 290
    • (1995) J. Non-Cryst. Solids , vol.186 , pp. 285-290
    • Lee, D.1    Stevens, P.C.2    Zeng, S.Q.3    Hunt, A.J.4
  • 100
    • 79960626417 scopus 로고    scopus 로고
    • Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica
    • T. Coquil, J. Fang, and L. Pilon Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica Int. J. Heat Mass Transf. 54 2011 4540 4548
    • (2011) Int. J. Heat Mass Transf. , vol.54 , pp. 4540-4548
    • Coquil, T.1    Fang, J.2    Pilon, L.3
  • 101
    • 35948983443 scopus 로고    scopus 로고
    • Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations
    • S.S. Mahajan, G. Subbarayan, and B.G. Sammakia Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations Phys. Rev. E 76 2007 056701
    • (2007) Phys. Rev. e , vol.76 , pp. 056701
    • Mahajan, S.S.1    Subbarayan, G.2    Sammakia, B.G.3
  • 102
    • 0031559226 scopus 로고    scopus 로고
    • A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
    • F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity J. Chem. Phys. 106 1997 6082 6085
    • (1997) J. Chem. Phys. , vol.106 , pp. 6082-6085
    • Müller-Plathe, F.1
  • 103
    • 0036537725 scopus 로고    scopus 로고
    • Comparison of atomic-level simulation methods for computing thermal conductivity
    • P.K. Schelling, S.R. Phillpot, and P. Keblinski Comparison of atomic-level simulation methods for computing thermal conductivity Phys. Rev. B 65 2002 144306
    • (2002) Phys. Rev. B , vol.65 , pp. 144306
    • Schelling, P.K.1    Phillpot, S.R.2    Keblinski, P.3
  • 104
    • 0001344146 scopus 로고    scopus 로고
    • Molecular-dynamics simulation of thermal conductivity of silicon crystals
    • S.G. Volz, and G. Chen Molecular-dynamics simulation of thermal conductivity of silicon crystals Phys. Rev. B 61 2000 2651 2656
    • (2000) Phys. Rev. B , vol.61 , pp. 2651-2656
    • Volz, S.G.1    Chen, G.2
  • 105
    • 37649030942 scopus 로고    scopus 로고
    • Thermal conductivity of crystalline quartz from classical simulations
    • Y.-G. Yoon, R. Car, D.J. Srolovitz, and S. Scandolo Thermal conductivity of crystalline quartz from classical simulations Phys. Rev. B 70 2004 012302
    • (2004) Phys. Rev. B , vol.70 , pp. 012302
    • Yoon, Y.-G.1    Car, R.2    Srolovitz, D.J.3    Scandolo, S.4
  • 106
    • 84860273255 scopus 로고    scopus 로고
    • A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing
    • T.Y. Ng, J.J. Yeo, and Z.S. Liu A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing J. Non-Cryst. Solids 358 2012 1350 1355
    • (2012) J. Non-Cryst. Solids , vol.358 , pp. 1350-1355
    • Ng, T.Y.1    Yeo, J.J.2    Liu, Z.S.3
  • 107
    • 40049087663 scopus 로고    scopus 로고
    • Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels
    • S. Bhattacharya, and J. Kieffer Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels J. Phys. Chem. C 112 2008 1764 1771
    • (2008) J. Phys. Chem. C , vol.112 , pp. 1764-1771
    • Bhattacharya, S.1    Kieffer, J.2
  • 108
    • 77956392513 scopus 로고    scopus 로고
    • Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation
    • J.S. Rivas Murillo, M.E. Bachlechner, F.A. Campo, and E.J. Barbero Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation J. Non-Cryst. Solids 356 2010 1325 1331
    • (2010) J. Non-Cryst. Solids , vol.356 , pp. 1325-1331
    • Rivas Murillo, J.S.1    Bachlechner, M.E.2    Campo, F.A.3    Barbero, E.J.4
  • 109
    • 12044254039 scopus 로고
    • Structural correlations in porous silica: Molecular dynamics simulation on a parallel computer
    • A. Nakano, L. Bi, R.K. Kalia, and P. Vashishta Structural correlations in porous silica: molecular dynamics simulation on a parallel computer Phys. Rev. Lett. 71 1993 85 88
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 85-88
    • Nakano, A.1    Bi, L.2    Kalia, R.K.3    Vashishta, P.4
  • 110
    • 0000649510 scopus 로고
    • Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer
    • A. Nakano, L. Bi, R.K. Kalia, and P. Vashishta Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer Phys. Rev. B 49 1994 9441 9452
    • (1994) Phys. Rev. B , vol.49 , pp. 9441-9452
    • Nakano, A.1    Bi, L.2    Kalia, R.K.3    Vashishta, P.4
  • 111
    • 0000028934 scopus 로고
    • Molecular dynamics computer simulations of silica aerogels
    • P.I. Pohl, J.-L. Faulon, and D.M. Smith Molecular dynamics computer simulations of silica aerogels J. Non-Cryst. Solids 186 1995 349 355
    • (1995) J. Non-Cryst. Solids , vol.186 , pp. 349-355
    • Pohl, P.I.1    Faulon, J.-L.2    Smith, D.M.3
  • 112
    • 0033877111 scopus 로고    scopus 로고
    • Molecular dynamics simulation of nanoporous silica
    • Beckers J.V.L.,De Leeuw S.W.,Molecular dynamics simulation of nanoporous silica,J. Non-Cryst. Solids,2000, 87-100.
    • (2000) J. Non-Cryst. Solids , vol.261 , pp. 87-100
    • Beckers, J.V.L.1    De Leeuw, S.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.