메뉴 건너뛰기




Volumn 56, Issue 12, 2010, Pages 3243-3256

Heat transfer in nanoparticle suspensions: Modeling the thermal conductivity of nanofluids

Author keywords

Nanofluids; Nanoparticles; Phonon scattering; Suspensions; Thermal conductivity

Indexed keywords

DISPERSED PHASE; EFFECTIVE THERMAL CONDUCTIVITY; EXPERIMENTAL DATA; HETEROGENEOUS SYSTEMS; NANOFLUIDS; NANOPARTICLE SUSPENSION; PARTICLE VOLUME FRACTIONS; SIZE DEPENDENCE; SUSPENSIONS; TEMPERATURE DEPENDENCE;

EID: 78349290763     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.12228     Document Type: Article
Times cited : (54)

References (119)
  • 1
    • 0037902411 scopus 로고    scopus 로고
    • Investigation on convective heat transfer and flow features of nanofluids
    • Xuan YM, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Trans-Trans ASME. 2003; 125: 151-155.
    • (2003) J Heat Trans-Trans ASME , vol.125 , pp. 151-155
    • Xuan, Y.M.1    Li, Q.2
  • 2
    • 21644462434 scopus 로고    scopus 로고
    • Experimental investigation into the pool boiling heat transfer of aqueous based gamma-alumina nanofluids
    • Wen DS, Ding YL. Experimental investigation into the pool boiling heat transfer of aqueous based gamma-alumina nanofluids. J Nanopart Res. 2005; 7: 265-274.
    • (2005) J Nanopart Res , vol.7 , pp. 265-274
    • Wen, D.S.1    Ding, Y.L.2
  • 3
    • 84890133693 scopus 로고    scopus 로고
    • Nanofluids Science and Technology
    • New Jersey, Wiley,
    • Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids Science and Technology. New Jersey: Wiley, 2008.
    • (2008)
    • Das, S.K.1    Choi, S.U.S.2    Yu, W.3    Pradeep, T.4
  • 4
    • 33750694638 scopus 로고    scopus 로고
    • Heat transfer characteristics of nanofluids: a review
    • Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007; 46: 1-19.
    • (2007) Int J Therm Sci , vol.46 , pp. 1-19
    • Wang, X.Q.1    Mujumdar, A.S.2
  • 5
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002; 91: 4568-4572.
    • (2002) J Appl Phys , vol.91 , pp. 4568-4572
    • Xie, H.Q.1    Wang, J.C.2    Xi, T.G.3    Liu, Y.4    Ai, F.5    Wu, Q.6
  • 6
    • 34447524065 scopus 로고    scopus 로고
    • Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation
    • Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation, J Heat Trans-Trans ASME. 2007; 129: 298-307.
    • (2007) J Heat Trans-Trans ASME , vol.129 , pp. 298-307
    • Kim, S.H.1    Choi, S.R.2    Kim, D.3
  • 9
    • 0003763309 scopus 로고
    • ASME Steam Tables: Thermodynamic and Transport Properties of Steam
    • Meyer CA. editor., 6th ed., New York, American Society of Mechanical Engineers,
    • Meyer CA. editor. ASME Steam Tables: Thermodynamic and Transport Properties of Steam, 6th ed. New York: American Society of Mechanical Engineers, 1993.
    • (1993)
  • 10
    • 0025419889 scopus 로고
    • Thermal conductivity of poly(ethylene glycols) and their binary mixtures
    • Diguilio R, Teja AS. Thermal conductivity of poly(ethylene glycols) and their binary mixtures. J Chem Eng Data. 1990; 35: 117-121.
    • (1990) J Chem Eng Data , vol.35 , pp. 117-121
    • Diguilio, R.1    Teja, A.S.2
  • 11
    • 0035907834 scopus 로고    scopus 로고
    • Polytetrahedral clusters
    • Doye JPK, Wales DJ. Polytetrahedral clusters. Phys Rev Lett. 2001; 86: 5719-5722.
    • (2001) Phys Rev Lett , vol.86 , pp. 5719-5722
    • Doye, J.P.K.1    Wales, D.J.2
  • 12
    • 0003638901 scopus 로고
    • Lange's Handbook of Chemistry
    • 14th ed., New York, McGraw-Hill,
    • Dean JA. Lange's Handbook of Chemistry, 14th ed. New York: McGraw-Hill, 1992.
    • (1992)
    • Dean, J.A.1
  • 13
    • 33745174178 scopus 로고    scopus 로고
    • Estimation of thermal conductivity of nanofluid using experimental effective particle volume
    • Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transfer. 2006; 19: 181-191.
    • (2006) Exp Heat Transfer , vol.19 , pp. 181-191
    • Kang, H.U.1    Kim, S.H.2    Oh, J.M.3
  • 15
    • 0003433434 scopus 로고    scopus 로고
    • Microscale Energy Transport
    • Tien C-L, Majumdar A, Gerner FM. editors., Washington D.C., Taylor & Francis,
    • Tien C-L, Majumdar A, Gerner FM. editors. Microscale Energy Transport. Washington D.C.: Taylor & Francis, 1998.
    • (1998)
  • 16
    • 78349292379 scopus 로고    scopus 로고
    • Tien C-L. editor. Annual Review of Heat Transfer, New York, Begell House,
    • Tien C-L. editor. Annual Review of Heat Transfer, Vol. 7. New York: Begell House, 1996.
    • (1996) , vol.7
  • 17
    • 34547707568 scopus 로고    scopus 로고
    • Nano/Microscale Heat Transfer
    • Nanoscience and Nanotechnology Series., McGraw Hill Professional,
    • Zhang ZM. Nano/Microscale Heat Transfer. Nanoscience and Nanotechnology Series. McGraw Hill Professional, 2007.
    • (2007)
    • Zhang, Z.M.1
  • 18
    • 28344442364 scopus 로고    scopus 로고
    • Phonon heat transport in silicon nanostructures
    • Ju YS. Phonon heat transport in silicon nanostructures. Appl Phys Lett. 2005; 87: 3.
    • (2005) Appl Phys Lett , vol.87 , pp. 3
    • Ju, Y.S.1
  • 19
    • 17044419614 scopus 로고    scopus 로고
    • Thermal property measurement of thin aluminum oxide layers for giant magnetoresistive (GMR) head applications
    • Behkam B, Yang YZ, Asheghi M. Thermal property measurement of thin aluminum oxide layers for giant magnetoresistive (GMR) head applications. Int J Heat Mass Transfer. 2005; 48: 2023-2031.
    • (2005) Int J Heat Mass Transfer , vol.48 , pp. 2023-2031
    • Behkam, B.1    Yang, Y.Z.2    Asheghi, M.3
  • 20
    • 2942606508 scopus 로고    scopus 로고
    • Phonon-boundary scattering in ultrathin single-crystal silicon layers
    • Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett. 2004; 84: 3819-3821.
    • (2004) Appl Phys Lett , vol.84 , pp. 3819-3821
    • Liu, W.1    Asheghi, M.2
  • 21
    • 36449004051 scopus 로고
    • Temperature dependence of thermophysical properties of GAAS/ALAS periodic structure
    • Yu XY, Chen G, Verma A, Smith JS. Temperature dependence of thermophysical properties of GAAS/ALAS periodic structure. Appl Phys Lett. 1995; 67: 3554-3556.
    • (1995) Appl Phys Lett , vol.67 , pp. 3554-3556
    • Yu, X.Y.1    Chen, G.2    Verma, A.3    Smith, J.S.4
  • 23
    • 33645320828 scopus 로고    scopus 로고
    • Phonon Knudsen flow in nanostructured semiconductor systems
    • Ziambaras E, Hyldgaard P. Phonon Knudsen flow in nanostructured semiconductor systems. J Appl Phys. 99: 054303, 2006.
    • (2006) J Appl Phys , vol.99 , pp. 054303
    • Ziambaras, E.1    Hyldgaard, P.2
  • 25
    • 33748893070 scopus 로고    scopus 로고
    • An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations
    • Fang KC, Weng CI, Ju SP. An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology. 2006; 17: 3909-3914.
    • (2006) Nanotechnology , vol.17 , pp. 3909-3914
    • Fang, K.C.1    Weng, C.I.2    Ju, S.P.3
  • 26
    • 0034564833 scopus 로고    scopus 로고
    • Thermal conductivity of suspensions in shear flow fields
    • Shin S, Lee SH. Thermal conductivity of suspensions in shear flow fields. Int J Heat Mass Transfer. 2000; 43: 4275-4284.
    • (2000) Int J Heat Mass Transfer , vol.43 , pp. 4275-4284
    • Shin, S.1    Lee, S.H.2
  • 27
    • 0026237131 scopus 로고
    • Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions
    • Turian RM, Sung DJ, Hsu FL. Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions. Fuel. 1991; 70: 1157-1172.
    • (1991) Fuel , vol.70 , pp. 1157-1172
    • Turian, R.M.1    Sung, D.J.2    Hsu, F.L.3
  • 28
    • 0029427666 scopus 로고
    • Developments and Applications of Non-Newtonian Flows
    • Siginer DA, Wang HP editors., New York, AMSE FED-231.
    • Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP editors. Developments and Applications of Non-Newtonian Flows. New York: AMSE FED-231. 1995: 99-105.
    • (1995) Enhancing thermal conductivity of fluids with nanoparticles , pp. 99-105
    • Choi, S.U.S.1
  • 29
    • 0001435905 scopus 로고    scopus 로고
    • Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
    • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001; 78: 718-720.
    • (2001) Appl Phys Lett , vol.78 , pp. 718-720
    • Eastman, J.A.1    Choi, S.U.S.2    Li, S.3    Yu, W.4    Thompson, L.J.5
  • 30
    • 34548118292 scopus 로고    scopus 로고
    • Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives
    • Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007; 462: 45-55.
    • (2007) Thermochim Acta , vol.462 , pp. 45-55
    • Jana, S.1    Salehi-Khojin, A.2    Zhong, W.H.3
  • 32
    • 33947722121 scopus 로고    scopus 로고
    • Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    • Zhang X, Gu H., Fujii M Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007; 31: 593-599.
    • (2007) Exp Therm Fluid Sci , vol.31 , pp. 593-599
    • Zhang, X.1    Gu, H.2    Fujii, M.3
  • 33
    • 33748792032 scopus 로고    scopus 로고
    • Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids
    • Zhang X, Gu H, Fujii M. Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys. 2006; 27: 569-580.
    • (2006) Int J Thermophys , vol.27 , pp. 569-580
    • Zhang, X.1    Gu, H.2    Fujii, M.3
  • 34
    • 33748307724 scopus 로고    scopus 로고
    • Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    • Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys. 2006; 100: 044325.
    • (2006) J Appl Phys , vol.100 , pp. 044325
    • Zhang, X.1    Gu, H.2    Fujii, M.3
  • 36
    • 33745244786 scopus 로고    scopus 로고
    • Thermal and rheological properties of carbon nanotube-in-oil dispersions
    • Yang Y, Grulke EA, Zhang ZG, Wu GF. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys. 2006; 99: 114307.
    • (2006) J Appl Phys , vol.99 , pp. 114307
    • Yang, Y.1    Grulke, E.A.2    Zhang, Z.G.3    Wu, G.F.4
  • 37
    • 67650732997 scopus 로고    scopus 로고
    • The effect of particle size on the thermal conductivity of nanofluids
    • Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of nanofluids. J Nanopart Res. 2009; 11: 1129-1136.
    • (2009) J Nanopart Res , vol.11 , pp. 1129-1136
    • Beck, M.P.1    Yuan, Y.2    Warrier, P.3    Teja, A.S.4
  • 38
    • 78349259075 scopus 로고
    • A Treatise on Electricity and Magnetism, 3rd ed., London, Oxford University Press,
    • Maxwell JC. A Treatise on Electricity and Magnetism, 3rd ed., Vol. II. London: Oxford University Press, 1892.
    • (1892) , vol.2
    • Maxwell, J.C.1
  • 39
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997; 81: 6692-6699.
    • (1997) J Appl Phys , vol.81 , pp. 6692-6699
    • Nan, C.W.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 40
    • 0038082987 scopus 로고    scopus 로고
    • The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
    • Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003; 5: 167-171.
    • (2003) J Nanopart Res , vol.5 , pp. 167-171
    • Yu, W.1    Choi, S.U.S.2
  • 43
    • 33747046393 scopus 로고    scopus 로고
    • Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
    • Liu MS, Lin MCC, Tsai CY, Wang CC. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transfer. 2006; 49: 3028-3033.
    • (2006) Int J Heat Mass Transfer , vol.49 , pp. 3028-3033
    • Liu, M.S.1    Lin, M.C.C.2    Tsai, C.Y.3    Wang, C.C.4
  • 44
    • 33745946462 scopus 로고    scopus 로고
    • Enhanced solubility of Ag-Cu nanoparticles and their thermal transport properties
    • Ceylan A, Jastrzembski K, Shah SI. Enhanced solubility of Ag-Cu nanoparticles and their thermal transport properties. Metall Mater Trans A. 2006; 37: 2033-2038.
    • (2006) Metall Mater Trans A , vol.37 , pp. 2033-2038
    • Ceylan, A.1    Jastrzembski, K.2    Shah, S.I.3
  • 47
    • 77955092055 scopus 로고    scopus 로고
    • The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures
    • in press; DOI 10.1007/s1 1051-009-9716-9.
    • Beck MP, Yuan Y, Warrier P, Teja AS. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J Nanoparticle Res, in press; DOI 10.1007/s1 1051-009-9716-9.
    • J Nanoparticle Res
    • Beck, M.P.1    Yuan, Y.2    Warrier, P.3    Teja, A.S.4
  • 48
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Trans-Trans ASME. 2003; 125: 567-574.
    • (2003) J Heat Trans-Trans ASME , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 49
    • 33747869244 scopus 로고    scopus 로고
    • Temperature-dependent thermal conductivity of nanorod based nanofluids
    • Yang B, Han ZH. Temperature-dependent thermal conductivity of nanorod based nanofluids. Appl Phys Lett. 2006; 89: 083111.
    • (2006) Appl Phys Lett , vol.89 , pp. 083111
    • Yang, B.1    Han, Z.H.2
  • 50
    • 35148869674 scopus 로고    scopus 로고
    • The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol
    • Beck MP, Sun T, Teja AS. The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilib. 2007; 260: 275-278.
    • (2007) Fluid Phase Equilib , vol.260 , pp. 275-278
    • Beck, M.P.1    Sun, T.2    Teja, A.S.3
  • 51
    • 0036806143 scopus 로고    scopus 로고
    • Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid
    • Xie HQ, Wang JC, Xi TG, Liu Y, Ai F. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. J Mater Sci Lett. 2002; 21: 1469-1471.
    • (2002) J Mater Sci Lett , vol.21 , pp. 1469-1471
    • Xie, H.Q.1    Wang, J.C.2    Xi, T.G.3    Liu, Y.4    Ai, F.5
  • 52
    • 33646739701 scopus 로고    scopus 로고
    • Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
    • Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006; 99: 084314.
    • (2006) J Appl Phys , vol.99 , pp. 084314
    • Li, C.H.1    Peterson, G.P.2
  • 54
    • 0032825295 scopus 로고    scopus 로고
    • Measuring thermal conductivity of fluids containing oxide nanoparticles
    • Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans-Trans ASME. 1999; 121: 280-289.
    • (1999) J Heat Trans-Trans ASME , vol.121 , pp. 280-289
    • Lee, S.1    Choi, S.U.S.2    Li, S.3    Eastman, J.A.4
  • 56
    • 33645667882 scopus 로고    scopus 로고
    • A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension
    • Lee D, Kim JW, Kim BG. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B. 2006; 110: 4323-4328.
    • (2006) J Phys Chem B , vol.110 , pp. 4323-4328
    • Lee, D.1    Kim, J.W.2    Kim, B.G.3
  • 57
    • 35549002617 scopus 로고    scopus 로고
    • Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes
    • Wright B, Thomas D, Hong H, Groven L, Puszynski J, Duke E, Ye X, Jin S. Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes. Appl Phys Lett. 2007; 91: 173116.
    • (2007) Appl Phys Lett , vol.91 , pp. 173116
    • Wright, B.1    Thomas, D.2    Hong, H.3    Groven, L.4    Puszynski, J.5    Duke, E.6    Ye, X.7    Jin, S.8
  • 58
    • 34547840202 scopus 로고    scopus 로고
    • Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube
    • Hong HP, Wright B, Wensel J, Jin SH, Ye XR, Roy W. Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube. Synth Met. 2007; 157: 437-440.
    • (2007) Synth Met , vol.157 , pp. 437-440
    • Hong, H.P.1    Wright, B.2    Wensel, J.3    Jin, S.H.4    Ye, X.R.5    Roy, W.6
  • 60
    • 0000544643 scopus 로고
    • On the influence of obstacles arranged in rectangular order upon the properties of a medium
    • Rayleigh L. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos Mag. 1892; 34: 481-502.
    • (1892) Philos Mag , vol.34 , pp. 481-502
    • Rayleigh, L.1
  • 61
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two-component systems
    • Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund. 1962; 1: 187-191.
    • (1962) Ind Eng Chem Fund , vol.1 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 62
    • 0001345525 scopus 로고
    • Conduction through a random suspension of spheres
    • Jeffrey DJ. Conduction through a random suspension of spheres. Proc R Soc London A. 1973; 335: 355-367.
    • (1973) Proc R Soc London A , vol.335 , pp. 355-367
    • Jeffrey, D.J.1
  • 63
    • 0016993583 scopus 로고
    • Methods for predicting thermal conductivity of composite systems
    • Progelhof RC, Throne JL, Ruetsch RR. Methods for predicting thermal conductivity of composite systems. Polym Eng Sci. 1976; 16: 615-625.
    • (1976) Polym Eng Sci , vol.16 , pp. 615-625
    • Progelhof, R.C.1    Throne, J.L.2    Ruetsch, R.R.3
  • 64
    • 5244347502 scopus 로고
    • The electrical resistance of binary metallic mixtures
    • Landauer R. The electrical resistance of binary metallic mixtures. J Appl Phys. 1952; 23: 779-784.
    • (1952) J Appl Phys , vol.23 , pp. 779-784
    • Landauer, R.1
  • 65
    • 0003457661 scopus 로고
    • Die Wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology)
    • 2nd ed., Berlin, Springer-Verlag,
    • Krischer O. Die Wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology), 2nd ed. Berlin: Springer-Verlag, 1963.
    • (1963)
    • Krischer, O.1
  • 66
    • 0000696879 scopus 로고
    • Thermal conductivity of 2-phase materials
    • Tsao GTN. Thermal conductivity of 2-phase materials. Ind Eng Chem. 1961; 53: 395-397.
    • (1961) Ind Eng Chem , vol.53 , pp. 395-397
    • Tsao, G.T.N.1
  • 67
    • 36849124660 scopus 로고
    • A variational approach to the theory of the effective magnetic permeability of multiphase materials
    • Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys. 1962; 33: 3125.
    • (1962) J Appl Phys , vol.33 , pp. 3125
    • Hashin, Z.1    Shtrikman, S.2
  • 68
    • 0004167016 scopus 로고
    • Predicting the Properties of Mixtures: Mixing Rules in Science and Technology
    • New York, Mercer Dekker,
    • Nielsen LE. Predicting the Properties of Mixtures: Mixing Rules in Science and Technology. New York: Mercer Dekker, 1978.
    • (1978)
    • Nielsen, L.E.1
  • 69
    • 34548605202 scopus 로고
    • Physics of inhomogeneous inorganic materials
    • Nan CW. Physics of inhomogeneous inorganic materials. Prog Mater Sci. 1993; 37: 1-117.
    • (1993) Prog Mater Sci , vol.37 , pp. 1-117
    • Nan, C.W.1
  • 71
    • 8844257274 scopus 로고    scopus 로고
    • The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model
    • Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. J Nanopart Res. 2004; 6: 355-361.
    • (2004) J Nanopart Res , vol.6 , pp. 355-361
    • Yu, W.1    Choi, S.U.S.2
  • 72
    • 18544377641 scopus 로고    scopus 로고
    • Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
    • Xie HQ, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transfer. 2005; 48: 2926-2932.
    • (2005) Int J Heat Mass Transfer , vol.48 , pp. 2926-2932
    • Xie, H.Q.1    Fujii, M.2    Zhang, X.3
  • 73
    • 26444611462 scopus 로고    scopus 로고
    • Model for thermal conductivity of carbon nanotube based composites
    • Xue QZ. Model for thermal conductivity of carbon nanotube based composites. Physica B. 2005; 368: 302-307.
    • (2005) Physica B , vol.368 , pp. 302-307
    • Xue, Q.Z.1
  • 74
    • 33746983549 scopus 로고    scopus 로고
    • A model for the thermal conductivity of nanofluids - the effect of interfacial layer
    • Leong KC, Yang C, Murshed SMS. A model for the thermal conductivity of nanofluids - the effect of interfacial layer. J Nanopart Res. 2006; 8: 245-254.
    • (2006) J Nanopart Res , vol.8 , pp. 245-254
    • Leong, K.C.1    Yang, C.2    Murshed, S.M.S.3
  • 75
    • 34250214988 scopus 로고    scopus 로고
    • The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
    • Feng YJ, Yu BM, Xu P, Zou MQ. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D: Appl Phys. 2007; 40: 3164-3171.
    • (2007) J Phys D: Appl Phys , vol.40 , pp. 3164-3171
    • Feng, Y.J.1    Yu, B.M.2    Xu, P.3    Zou, M.Q.4
  • 76
    • 34249895253 scopus 로고    scopus 로고
    • Thermophysical properties of interfacial layer in nanofluids
    • Lee D. Thermophysical properties of interfacial layer in nanofluids. Langmuir. 2007; 23: 6011-6018.
    • (2007) Langmuir , vol.23 , pp. 6011-6018
    • Lee, D.1
  • 77
    • 44249126183 scopus 로고    scopus 로고
    • An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation
    • Li L, Zhang YW, Ma HB, Yang M. An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation. Phys Lett A. 2008; 372: 4541-4544.
    • (2008) Phys Lett A , vol.372 , pp. 4541-4544
    • Li, L.1    Zhang, Y.W.2    Ma, H.B.3    Yang, M.4
  • 78
    • 34247323518 scopus 로고    scopus 로고
    • Thermal conductivity of ordered molecular water
    • Evans W, Fish J, Keblinski P. Thermal conductivity of ordered molecular water. J Chem Phys. 2007; 126: 154504.
    • (2007) J Chem Phys , vol.126 , pp. 154504
    • Evans, W.1    Fish, J.2    Keblinski, P.3
  • 79
    • 2942694254 scopus 로고    scopus 로고
    • Role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004; 84: 4316-4318.
    • (2004) Appl Phys Lett , vol.84 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 80
    • 16244411133 scopus 로고    scopus 로고
    • A new thermal conductivity model for nanofluids
    • Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004; 6: 577-588.
    • (2004) J Nanopart Res , vol.6 , pp. 577-588
    • Koo, J.1    Kleinstreuer, C.2
  • 81
    • 18144386609 scopus 로고    scopus 로고
    • Thermal conductivity of nanoscale colloidal solutions (nanofluids)
    • Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005; 94: 025901.
    • (2005) Phys Rev Lett , vol.94 , pp. 025901
    • Prasher, R.1    Bhattacharya, P.2    Phelan, P.E.3
  • 82
    • 27544505304 scopus 로고    scopus 로고
    • Effective thermal conductivity of nanofluids containing spherical nanoparticles
    • Ren Y, Xie H, Cai A. Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D: Appl Phys. 2005; 38: 3958-3961.
    • (2005) J Phys D: Appl Phys , vol.38 , pp. 3958-3961
    • Ren, Y.1    Xie, H.2    Cai, A.3
  • 83
    • 33748333479 scopus 로고    scopus 로고
    • Stochastic thermal transport of nanoparticle suspensions
    • Xuan YM, Li Q, Zhang X, Fujii M. Stochastic thermal transport of nanoparticle suspensions. J Appl Phys. 2006; 100: 043507.
    • (2006) J Appl Phys , vol.100 , pp. 043507
    • Xuan, Y.M.1    Li, Q.2    Zhang, X.3    Fujii, M.4
  • 85
    • 51149220754 scopus 로고
    • Thermal boundary resistance
    • Swartz ET, Pohl RO. Thermal boundary resistance. Rev Mod Phys. 1989; 61: 605-668.
    • (1989) Rev Mod Phys , vol.61 , pp. 605-668
    • Swartz, E.T.1    Pohl, R.O.2
  • 87
    • 20544463972 scopus 로고    scopus 로고
    • A numerical technique for computing effective thermal conductivity of fluid-particle mixtures
    • Kumar S, Murthy JY. A numerical technique for computing effective thermal conductivity of fluid-particle mixtures. Numer Heat Transfer Part B. 2005; 47: 555-572.
    • (2005) Numer Heat Transfer Part B , vol.47 , pp. 555-572
    • Kumar, S.1    Murthy, J.Y.2
  • 88
    • 29144521297 scopus 로고    scopus 로고
    • Differential effective medium theory for thermal conductivity in nanofluids
    • Gao L, Zhou XF. Differential effective medium theory for thermal conductivity in nanofluids. Phys Lett A. 2006; 348: 355-360.
    • (2006) Phys Lett A , vol.348 , pp. 355-360
    • Gao, L.1    Zhou, X.F.2
  • 90
    • 78349291299 scopus 로고    scopus 로고
    • Thermal conductivity of aqueous nanofluids containing ceria nanoparticles
    • in press.
    • Beck MP, Yuan Y, Warrier P, Teja AS. Thermal conductivity of aqueous nanofluids containing ceria nanoparticles. J Applied Phys, in press.
    • J Applied Phys
    • Beck, M.P.1    Yuan, Y.2    Warrier, P.3    Teja, A.S.4
  • 91
    • 33645738437 scopus 로고    scopus 로고
    • Size-dependent thermal conductivity of nanoscale semiconducting systems
    • Liang LH, Li B. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B. 2006; 73: 153303.
    • (2006) Phys Rev B , vol.73 , pp. 153303
    • Liang, L.H.1    Li, B.2
  • 92
    • 0035364926 scopus 로고    scopus 로고
    • Melting temperatures of semiconductor nanocrystals in the mesoscopic size range
    • Zhang Z, Zhao M, Jiang Q. Melting temperatures of semiconductor nanocrystals in the mesoscopic size range. Semicond Sci Technol. 2001; 16: L33-L35.
    • (2001) Semicond Sci Technol , vol.16
    • Zhang, Z.1    Zhao, M.2    Jiang, Q.3
  • 93
    • 0003884869 scopus 로고    scopus 로고
    • CRC Materials Science and Engineering Handbook
    • 3rd ed., Boca Raton, FL, CRC Press,
    • Alexander W, Shackelford J. CRC Materials Science and Engineering Handbook, 3rd ed. Boca Raton, FL: CRC Press, 2001.
    • (2001)
    • Alexander, W.1    Shackelford, J.2
  • 94
    • 78349284545 scopus 로고    scopus 로고
    • NIST webbook,
    • NIST webbook
  • 95
    • 4344689167 scopus 로고    scopus 로고
    • Handbook of Inorganic Chemicals
    • New York, McGraw-Hill,
    • Patnaik P. Handbook of Inorganic Chemicals. New York: McGraw-Hill, 2002.
    • (2002)
    • Patnaik, P.1
  • 97
    • 0001657985 scopus 로고
    • 4 crystals from 3 degrees to 300 degrees K
    • 4 crystals from 3 degrees to 300 degrees K. Phys Rev. 1962; 126: 427-441.
    • (1962) Phys Rev , vol.126 , pp. 427-441
    • Slack, G.A.1
  • 98
    • 0004217602 scopus 로고    scopus 로고
    • Perry's Chemical Engineers' Handbook
    • Perry RH, Green DW. editors., 7th ed., New York, McGraw-Hill,
    • Perry RH, Green DW. editors. Perry's Chemical Engineers' Handbook, 7th ed. New York: McGraw-Hill, 1997.
    • (1997)
  • 99
    • 0003638901 scopus 로고
    • Lange's Handbook of Chemistry
    • 14th ed., New York, McGraw-Hill,
    • Dean JA. Lange's Handbook of Chemistry, 14th ed. New York: McGraw-Hill, 1992.
    • (1992)
    • Dean, J.A.1
  • 100
    • 0003924110 scopus 로고    scopus 로고
    • Chemical Properties Handbook
    • New York, McGraw-Hill,
    • Yaws CL. Chemical Properties Handbook. New York: McGraw-Hill, 1999.
    • (1999)
    • Yaws, C.L.1
  • 101
    • 0004189758 scopus 로고
    • Crystal Structure of Minerals
    • New York, Cornell University Press,
    • Bragg L, Claringbull GF, Taylor WH. Crystal Structure of Minerals. New York: Cornell University Press, 1965.
    • (1965)
    • Bragg, L.1    Claringbull, G.F.2    Taylor, W.H.3
  • 102
    • 0034295172 scopus 로고    scopus 로고
    • The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range
    • Wen Z, Zhao M, Jiang Q. The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range. J Phys Condens Matter. 2000; 12: 8819-8824.
    • (2000) J Phys Condens Matter , vol.12 , pp. 8819-8824
    • Wen, Z.1    Zhao, M.2    Jiang, Q.3
  • 103
    • 0000102019 scopus 로고    scopus 로고
    • Melting thermodynamics of organic nanocrystals
    • Jiang Q, Shi HX, Zhao M. Melting thermodynamics of organic nanocrystals. J Chem Phys. 1999; 111: 2176-2180.
    • (1999) J Chem Phys , vol.111 , pp. 2176-2180
    • Jiang, Q.1    Shi, H.X.2    Zhao, M.3
  • 104
    • 0003614027 scopus 로고    scopus 로고
    • Principles of Heat Transfer
    • New York, Wiley-Interscience,
    • Kaviany, M. Principles of Heat Transfer, New York: Wiley-Interscience, 2002.
    • (2002)
    • Kaviany, M.1
  • 105
    • 0242303071 scopus 로고    scopus 로고
    • Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K
    • and .
    • Watari K, Nakano H, Sato K, Urabe K, Ishizaki K, Cao S and Mori K. Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K. J Am Ceram Soc. 2003; 86: 1812-1814.
    • (2003) J Am Ceram Soc , vol.86 , pp. 1812-1814
    • Watari, K.1    Nakano, H.2    Sato, K.3    Urabe, K.4    Ishizaki, K.5    Cao, S.6    Mori, K.7
  • 108
    • 33847322946 scopus 로고    scopus 로고
    • Study of thermal conductivity of nanofluids for the application of heat transfer fluids
    • Yoo DH, Hong KS, Yang HS. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta. 2007; 455: 66-69.
    • (2007) Thermochim Acta , vol.455 , pp. 66-69
    • Yoo, D.H.1    Hong, K.S.2    Yang, H.S.3
  • 109
    • 51849140510 scopus 로고    scopus 로고
    • Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 omega method
    • Oh DK, Jain A, Eaton JK, Goodson KE, Lee JS. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 omega method. Int J Heat Fluid Flow. 2008; 29: 1456-1461.
    • (2008) Int J Heat Fluid Flow , vol.29 , pp. 1456-1461
    • Oh, D.K.1    Jain, A.2    Eaton, J.K.3    Goodson, K.E.4    Lee, J.S.5
  • 110
    • 35648929436 scopus 로고    scopus 로고
    • Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3 omega method and mechanism analysis of heat transport
    • Wang ZL, Tang DW, Liu S, Zheng XH, Araki N. Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3 omega method and mechanism analysis of heat transport. Int J Thermophys. 2007; 28: 1255-1268.
    • (2007) Int J Thermophys , vol.28 , pp. 1255-1268
    • Wang, Z.L.1    Tang, D.W.2    Liu, S.3    Zheng, X.H.4    Araki, N.5
  • 112
    • 30344457064 scopus 로고    scopus 로고
    • Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
    • Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology J. 2005; 17: 35-40.
    • (2005) Korea-Australia Rheology J , vol.17 , pp. 35-40
    • Kwak, K.1    Kim, C.2
  • 113
    • 30944440044 scopus 로고    scopus 로고
    • Enhancement of thermal conductivity with CuO for nanofluids
    • Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Tech. 2006; 29: 72-77.
    • (2006) Chem Eng Tech , vol.29 , pp. 72-77
    • Liu, M.S.1    Lin, M.C.2    Huang, I.T.3    Wang, C.C.4
  • 114
    • 65449161444 scopus 로고    scopus 로고
    • Thermal performance enhancement in nanofluids containing diamond nanoparticles
    • Xie H, Yu W, Li Y. Thermal performance enhancement in nanofluids containing diamond nanoparticles. J Phys D: Appl Phys. 2009; 42: 095413.
    • (2009) J Phys D: Appl Phys , vol.42 , pp. 095413
    • Xie, H.1    Yu, W.2    Li, Y.3
  • 115
    • 0036477316 scopus 로고    scopus 로고
    • Thermal conductivity of suspension containing SiC particles
    • Xie HQ, Wang JC, Xi TG, Liu Y, Ai F. Thermal conductivity of suspension containing SiC particles. J Mater Sci Lett. 2002; 21: 193-195.
    • (2002) J Mater Sci Lett , vol.21 , pp. 193-195
    • Xie, H.Q.1    Wang, J.C.2    Xi, T.G.3    Liu, Y.4    Ai, F.5
  • 116
    • 63749098385 scopus 로고    scopus 로고
    • An investigation of silicon carbide-water nanofluid for heat transfer applications
    • Singh D, Timofeeva W, Yu W, Routbort J, Smith D, Lopez-Cepero JM. An investigation of silicon carbide-water nanofluid for heat transfer applications. J Appl Phys. 2009; 105: 064306.
    • (2009) J Appl Phys , vol.105 , pp. 064306
    • Singh, D.1    Timofeeva, W.2    Yu, W.3    Routbort, J.4    Smith, D.5    Lopez-Cepero, J.M.6
  • 117
    • 77953641914 scopus 로고    scopus 로고
    • The limiting behavior of the thermal conductivity of nanoparticles and nanofluids
    • in press; DOI 10.1063/1.3354094.
    • Teja AS, Beck MP, Yuan Y, Warrier P. The limiting behavior of the thermal conductivity of nanoparticles and nanofluids. J. Appl Phys., in press; DOI 10.1063/1.3354094.
    • J. Appl Phys
    • Teja, A.S.1    Beck, M.P.2    Yuan, Y.3    Warrier, P.4
  • 119
    • 33846934416 scopus 로고    scopus 로고
    • Atomistic modeling of amorphous silicon carbide using a bond-order potential
    • Devanathan R, Gao F, Weber WJ. Atomistic modeling of amorphous silicon carbide using a bond-order potential. Nucl Instr Meth Phys Res B. 2007; 255: 130-135.
    • (2007) Nucl Instr Meth Phys Res B , vol.255 , pp. 130-135
    • Devanathan, R.1    Gao, F.2    Weber, W.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.