-
1
-
-
0037902411
-
Investigation on convective heat transfer and flow features of nanofluids
-
Xuan YM, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Trans-Trans ASME. 2003; 125: 151-155.
-
(2003)
J Heat Trans-Trans ASME
, vol.125
, pp. 151-155
-
-
Xuan, Y.M.1
Li, Q.2
-
2
-
-
21644462434
-
Experimental investigation into the pool boiling heat transfer of aqueous based gamma-alumina nanofluids
-
Wen DS, Ding YL. Experimental investigation into the pool boiling heat transfer of aqueous based gamma-alumina nanofluids. J Nanopart Res. 2005; 7: 265-274.
-
(2005)
J Nanopart Res
, vol.7
, pp. 265-274
-
-
Wen, D.S.1
Ding, Y.L.2
-
3
-
-
84890133693
-
Nanofluids Science and Technology
-
New Jersey, Wiley,
-
Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids Science and Technology. New Jersey: Wiley, 2008.
-
(2008)
-
-
Das, S.K.1
Choi, S.U.S.2
Yu, W.3
Pradeep, T.4
-
4
-
-
33750694638
-
Heat transfer characteristics of nanofluids: a review
-
Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007; 46: 1-19.
-
(2007)
Int J Therm Sci
, vol.46
, pp. 1-19
-
-
Wang, X.Q.1
Mujumdar, A.S.2
-
5
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002; 91: 4568-4572.
-
(2002)
J Appl Phys
, vol.91
, pp. 4568-4572
-
-
Xie, H.Q.1
Wang, J.C.2
Xi, T.G.3
Liu, Y.4
Ai, F.5
Wu, Q.6
-
6
-
-
34447524065
-
Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation
-
Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation, J Heat Trans-Trans ASME. 2007; 129: 298-307.
-
(2007)
J Heat Trans-Trans ASME
, vol.129
, pp. 298-307
-
-
Kim, S.H.1
Choi, S.R.2
Kim, D.3
-
8
-
-
0003944113
-
Transport Phenomena
-
2nd ed., New York, Wiley,
-
Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena, 2nd ed. New York: Wiley, 2002.
-
(2002)
-
-
Bird, R.B.1
Stewart, W.E.2
Lightfoot, E.N.3
-
9
-
-
0003763309
-
ASME Steam Tables: Thermodynamic and Transport Properties of Steam
-
Meyer CA. editor., 6th ed., New York, American Society of Mechanical Engineers,
-
Meyer CA. editor. ASME Steam Tables: Thermodynamic and Transport Properties of Steam, 6th ed. New York: American Society of Mechanical Engineers, 1993.
-
(1993)
-
-
-
10
-
-
0025419889
-
Thermal conductivity of poly(ethylene glycols) and their binary mixtures
-
Diguilio R, Teja AS. Thermal conductivity of poly(ethylene glycols) and their binary mixtures. J Chem Eng Data. 1990; 35: 117-121.
-
(1990)
J Chem Eng Data
, vol.35
, pp. 117-121
-
-
Diguilio, R.1
Teja, A.S.2
-
11
-
-
0035907834
-
Polytetrahedral clusters
-
Doye JPK, Wales DJ. Polytetrahedral clusters. Phys Rev Lett. 2001; 86: 5719-5722.
-
(2001)
Phys Rev Lett
, vol.86
, pp. 5719-5722
-
-
Doye, J.P.K.1
Wales, D.J.2
-
12
-
-
0003638901
-
Lange's Handbook of Chemistry
-
14th ed., New York, McGraw-Hill,
-
Dean JA. Lange's Handbook of Chemistry, 14th ed. New York: McGraw-Hill, 1992.
-
(1992)
-
-
Dean, J.A.1
-
13
-
-
33745174178
-
Estimation of thermal conductivity of nanofluid using experimental effective particle volume
-
Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transfer. 2006; 19: 181-191.
-
(2006)
Exp Heat Transfer
, vol.19
, pp. 181-191
-
-
Kang, H.U.1
Kim, S.H.2
Oh, J.M.3
-
14
-
-
0035473529
-
Anomalous thermal conductivity enhancement in nanotube suspensions
-
Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001; 79: 2252-2254.
-
(2001)
Appl Phys Lett
, vol.79
, pp. 2252-2254
-
-
Choi, S.U.S.1
Zhang, Z.G.2
Yu, W.3
Lockwood, F.E.4
Grulke, E.A.5
-
15
-
-
0003433434
-
Microscale Energy Transport
-
Tien C-L, Majumdar A, Gerner FM. editors., Washington D.C., Taylor & Francis,
-
Tien C-L, Majumdar A, Gerner FM. editors. Microscale Energy Transport. Washington D.C.: Taylor & Francis, 1998.
-
(1998)
-
-
-
16
-
-
78349292379
-
-
Tien C-L. editor. Annual Review of Heat Transfer, New York, Begell House,
-
Tien C-L. editor. Annual Review of Heat Transfer, Vol. 7. New York: Begell House, 1996.
-
(1996)
, vol.7
-
-
-
17
-
-
34547707568
-
Nano/Microscale Heat Transfer
-
Nanoscience and Nanotechnology Series., McGraw Hill Professional,
-
Zhang ZM. Nano/Microscale Heat Transfer. Nanoscience and Nanotechnology Series. McGraw Hill Professional, 2007.
-
(2007)
-
-
Zhang, Z.M.1
-
18
-
-
28344442364
-
Phonon heat transport in silicon nanostructures
-
Ju YS. Phonon heat transport in silicon nanostructures. Appl Phys Lett. 2005; 87: 3.
-
(2005)
Appl Phys Lett
, vol.87
, pp. 3
-
-
Ju, Y.S.1
-
19
-
-
17044419614
-
Thermal property measurement of thin aluminum oxide layers for giant magnetoresistive (GMR) head applications
-
Behkam B, Yang YZ, Asheghi M. Thermal property measurement of thin aluminum oxide layers for giant magnetoresistive (GMR) head applications. Int J Heat Mass Transfer. 2005; 48: 2023-2031.
-
(2005)
Int J Heat Mass Transfer
, vol.48
, pp. 2023-2031
-
-
Behkam, B.1
Yang, Y.Z.2
Asheghi, M.3
-
20
-
-
2942606508
-
Phonon-boundary scattering in ultrathin single-crystal silicon layers
-
Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett. 2004; 84: 3819-3821.
-
(2004)
Appl Phys Lett
, vol.84
, pp. 3819-3821
-
-
Liu, W.1
Asheghi, M.2
-
21
-
-
36449004051
-
Temperature dependence of thermophysical properties of GAAS/ALAS periodic structure
-
Yu XY, Chen G, Verma A, Smith JS. Temperature dependence of thermophysical properties of GAAS/ALAS periodic structure. Appl Phys Lett. 1995; 67: 3554-3556.
-
(1995)
Appl Phys Lett
, vol.67
, pp. 3554-3556
-
-
Yu, X.Y.1
Chen, G.2
Verma, A.3
Smith, J.S.4
-
22
-
-
0037439322
-
Nanoscale thermal transport
-
Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR. Nanoscale thermal transport. J Appl Phys. 2003; 93: 793-818.
-
(2003)
J Appl Phys
, vol.93
, pp. 793-818
-
-
Cahill, D.G.1
Ford, W.K.2
Goodson, K.E.3
Mahan, G.D.4
Majumdar, A.5
Maris, H.J.6
Merlin, R.7
Phillpot, S.R.8
-
23
-
-
33645320828
-
Phonon Knudsen flow in nanostructured semiconductor systems
-
Ziambaras E, Hyldgaard P. Phonon Knudsen flow in nanostructured semiconductor systems. J Appl Phys. 99: 054303, 2006.
-
(2006)
J Appl Phys
, vol.99
, pp. 054303
-
-
Ziambaras, E.1
Hyldgaard, P.2
-
24
-
-
0142167495
-
Thermal conductivity of individual silicon nanowires
-
Li DY, Wu YY, Kim P, Shi L, Yang PD, Majumdar A. Thermal conductivity of individual silicon nanowires. Appl Phys Lett. 2003; 83: 2934-2936.
-
(2003)
Appl Phys Lett
, vol.83
, pp. 2934-2936
-
-
Li, D.Y.1
Wu, Y.Y.2
Kim, P.3
Shi, L.4
Yang, P.D.5
Majumdar, A.6
-
25
-
-
33748893070
-
An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations
-
Fang KC, Weng CI, Ju SP. An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology. 2006; 17: 3909-3914.
-
(2006)
Nanotechnology
, vol.17
, pp. 3909-3914
-
-
Fang, K.C.1
Weng, C.I.2
Ju, S.P.3
-
26
-
-
0034564833
-
Thermal conductivity of suspensions in shear flow fields
-
Shin S, Lee SH. Thermal conductivity of suspensions in shear flow fields. Int J Heat Mass Transfer. 2000; 43: 4275-4284.
-
(2000)
Int J Heat Mass Transfer
, vol.43
, pp. 4275-4284
-
-
Shin, S.1
Lee, S.H.2
-
27
-
-
0026237131
-
Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions
-
Turian RM, Sung DJ, Hsu FL. Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions. Fuel. 1991; 70: 1157-1172.
-
(1991)
Fuel
, vol.70
, pp. 1157-1172
-
-
Turian, R.M.1
Sung, D.J.2
Hsu, F.L.3
-
28
-
-
0029427666
-
Developments and Applications of Non-Newtonian Flows
-
Siginer DA, Wang HP editors., New York, AMSE FED-231.
-
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP editors. Developments and Applications of Non-Newtonian Flows. New York: AMSE FED-231. 1995: 99-105.
-
(1995)
Enhancing thermal conductivity of fluids with nanoparticles
, pp. 99-105
-
-
Choi, S.U.S.1
-
29
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001; 78: 718-720.
-
(2001)
Appl Phys Lett
, vol.78
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
30
-
-
34548118292
-
Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives
-
Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007; 462: 45-55.
-
(2007)
Thermochim Acta
, vol.462
, pp. 45-55
-
-
Jana, S.1
Salehi-Khojin, A.2
Zhong, W.H.3
-
31
-
-
0030711234
-
Enhanced thermal conductivity through the development of nanofluids
-
Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. Mater Res Soc Symp Proc (Nanophase and nanocomposite materials II). 1997; 457: 3-11.
-
(1997)
Mater Res Soc Symp Proc (Nanophase and nanocomposite materials II)
, vol.457
, pp. 3-11
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Thompson, L.J.4
Lee, S.5
-
32
-
-
33947722121
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
Zhang X, Gu H., Fujii M Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007; 31: 593-599.
-
(2007)
Exp Therm Fluid Sci
, vol.31
, pp. 593-599
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
33
-
-
33748792032
-
Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids
-
Zhang X, Gu H, Fujii M. Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys. 2006; 27: 569-580.
-
(2006)
Int J Thermophys
, vol.27
, pp. 569-580
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
34
-
-
33748307724
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys. 2006; 100: 044325.
-
(2006)
J Appl Phys
, vol.100
, pp. 044325
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
35
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory
-
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007; 76: 061203.
-
(2007)
Phys Rev E
, vol.76
, pp. 061203
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
Sprunt, S.5
Lopatina, L.M.6
Selinger, J.V.7
-
36
-
-
33745244786
-
Thermal and rheological properties of carbon nanotube-in-oil dispersions
-
Yang Y, Grulke EA, Zhang ZG, Wu GF. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys. 2006; 99: 114307.
-
(2006)
J Appl Phys
, vol.99
, pp. 114307
-
-
Yang, Y.1
Grulke, E.A.2
Zhang, Z.G.3
Wu, G.F.4
-
37
-
-
67650732997
-
The effect of particle size on the thermal conductivity of nanofluids
-
Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of nanofluids. J Nanopart Res. 2009; 11: 1129-1136.
-
(2009)
J Nanopart Res
, vol.11
, pp. 1129-1136
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
38
-
-
78349259075
-
-
A Treatise on Electricity and Magnetism, 3rd ed., London, Oxford University Press,
-
Maxwell JC. A Treatise on Electricity and Magnetism, 3rd ed., Vol. II. London: Oxford University Press, 1892.
-
(1892)
, vol.2
-
-
Maxwell, J.C.1
-
39
-
-
0031143265
-
Effective thermal conductivity of particulate composites with interfacial thermal resistance
-
Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997; 81: 6692-6699.
-
(1997)
J Appl Phys
, vol.81
, pp. 6692-6699
-
-
Nan, C.W.1
Birringer, R.2
Clarke, D.R.3
Gleiter, H.4
-
40
-
-
0038082987
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
-
Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003; 5: 167-171.
-
(2003)
J Nanopart Res
, vol.5
, pp. 167-171
-
-
Yu, W.1
Choi, S.U.S.2
-
43
-
-
33747046393
-
Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
-
Liu MS, Lin MCC, Tsai CY, Wang CC. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transfer. 2006; 49: 3028-3033.
-
(2006)
Int J Heat Mass Transfer
, vol.49
, pp. 3028-3033
-
-
Liu, M.S.1
Lin, M.C.C.2
Tsai, C.Y.3
Wang, C.C.4
-
44
-
-
33745946462
-
Enhanced solubility of Ag-Cu nanoparticles and their thermal transport properties
-
Ceylan A, Jastrzembski K, Shah SI. Enhanced solubility of Ag-Cu nanoparticles and their thermal transport properties. Metall Mater Trans A. 2006; 37: 2033-2038.
-
(2006)
Metall Mater Trans A
, vol.37
, pp. 2033-2038
-
-
Ceylan, A.1
Jastrzembski, K.2
Shah, S.I.3
-
45
-
-
33646735359
-
Thermal conductivity of nanoparticle suspensions
-
Putnam SA, Cahill DG, Braun PV, Ge ZB, Shimmin RG. Thermal conductivity of nanoparticle suspensions. J Appl Phys. 2006; 99: 084308.
-
(2006)
J Appl Phys
, vol.99
, pp. 084308
-
-
Putnam, S.A.1
Cahill, D.G.2
Braun, P.V.3
Ge, Z.B.4
Shimmin, R.G.5
-
47
-
-
77955092055
-
The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures
-
in press; DOI 10.1007/s1 1051-009-9716-9.
-
Beck MP, Yuan Y, Warrier P, Teja AS. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J Nanoparticle Res, in press; DOI 10.1007/s1 1051-009-9716-9.
-
J Nanoparticle Res
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
48
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Trans-Trans ASME. 2003; 125: 567-574.
-
(2003)
J Heat Trans-Trans ASME
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
49
-
-
33747869244
-
Temperature-dependent thermal conductivity of nanorod based nanofluids
-
Yang B, Han ZH. Temperature-dependent thermal conductivity of nanorod based nanofluids. Appl Phys Lett. 2006; 89: 083111.
-
(2006)
Appl Phys Lett
, vol.89
, pp. 083111
-
-
Yang, B.1
Han, Z.H.2
-
50
-
-
35148869674
-
The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol
-
Beck MP, Sun T, Teja AS. The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilib. 2007; 260: 275-278.
-
(2007)
Fluid Phase Equilib
, vol.260
, pp. 275-278
-
-
Beck, M.P.1
Sun, T.2
Teja, A.S.3
-
51
-
-
0036806143
-
Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid
-
Xie HQ, Wang JC, Xi TG, Liu Y, Ai F. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. J Mater Sci Lett. 2002; 21: 1469-1471.
-
(2002)
J Mater Sci Lett
, vol.21
, pp. 1469-1471
-
-
Xie, H.Q.1
Wang, J.C.2
Xi, T.G.3
Liu, Y.4
Ai, F.5
-
52
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006; 99: 084314.
-
(2006)
J Appl Phys
, vol.99
, pp. 084314
-
-
Li, C.H.1
Peterson, G.P.2
-
54
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans-Trans ASME. 1999; 121: 280-289.
-
(1999)
J Heat Trans-Trans ASME
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
55
-
-
33746303097
-
Investigation on characteristics of thermal conductivity enhancement of nanofluids
-
Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, and Lee JK. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006; 6: 1068-1071.
-
(2006)
Curr Appl Phys
, vol.6
, pp. 1068-1071
-
-
Hwang, Y.J.1
Ahn, Y.C.2
Shin, H.S.3
Lee, C.G.4
Kim, G.T.5
Park, H.S.6
Lee, J.K.7
-
56
-
-
33645667882
-
A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension
-
Lee D, Kim JW, Kim BG. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B. 2006; 110: 4323-4328.
-
(2006)
J Phys Chem B
, vol.110
, pp. 4323-4328
-
-
Lee, D.1
Kim, J.W.2
Kim, B.G.3
-
57
-
-
35549002617
-
Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes
-
Wright B, Thomas D, Hong H, Groven L, Puszynski J, Duke E, Ye X, Jin S. Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes. Appl Phys Lett. 2007; 91: 173116.
-
(2007)
Appl Phys Lett
, vol.91
, pp. 173116
-
-
Wright, B.1
Thomas, D.2
Hong, H.3
Groven, L.4
Puszynski, J.5
Duke, E.6
Ye, X.7
Jin, S.8
-
58
-
-
34547840202
-
Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube
-
Hong HP, Wright B, Wensel J, Jin SH, Ye XR, Roy W. Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube. Synth Met. 2007; 157: 437-440.
-
(2007)
Synth Met
, vol.157
, pp. 437-440
-
-
Hong, H.P.1
Wright, B.2
Wensel, J.3
Jin, S.H.4
Ye, X.R.5
Roy, W.6
-
59
-
-
38349191655
-
Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes
-
Wensel J, Wright B, Thomas D, Douglas W, Mannhalter B, Cross W, Hong HP, Kellar J, Smith P, Roy W. Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes. Appl Phys Lett. 2008; 92: 023110.
-
(2008)
Appl Phys Lett
, vol.92
, pp. 023110
-
-
Wensel, J.1
Wright, B.2
Thomas, D.3
Douglas, W.4
Mannhalter, B.5
Cross, W.6
Hong, H.P.7
Kellar, J.8
Smith, P.9
Roy, W.10
-
60
-
-
0000544643
-
On the influence of obstacles arranged in rectangular order upon the properties of a medium
-
Rayleigh L. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos Mag. 1892; 34: 481-502.
-
(1892)
Philos Mag
, vol.34
, pp. 481-502
-
-
Rayleigh, L.1
-
61
-
-
0242582398
-
Thermal conductivity of heterogeneous two-component systems
-
Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund. 1962; 1: 187-191.
-
(1962)
Ind Eng Chem Fund
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
62
-
-
0001345525
-
Conduction through a random suspension of spheres
-
Jeffrey DJ. Conduction through a random suspension of spheres. Proc R Soc London A. 1973; 335: 355-367.
-
(1973)
Proc R Soc London A
, vol.335
, pp. 355-367
-
-
Jeffrey, D.J.1
-
63
-
-
0016993583
-
Methods for predicting thermal conductivity of composite systems
-
Progelhof RC, Throne JL, Ruetsch RR. Methods for predicting thermal conductivity of composite systems. Polym Eng Sci. 1976; 16: 615-625.
-
(1976)
Polym Eng Sci
, vol.16
, pp. 615-625
-
-
Progelhof, R.C.1
Throne, J.L.2
Ruetsch, R.R.3
-
64
-
-
5244347502
-
The electrical resistance of binary metallic mixtures
-
Landauer R. The electrical resistance of binary metallic mixtures. J Appl Phys. 1952; 23: 779-784.
-
(1952)
J Appl Phys
, vol.23
, pp. 779-784
-
-
Landauer, R.1
-
65
-
-
0003457661
-
Die Wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology)
-
2nd ed., Berlin, Springer-Verlag,
-
Krischer O. Die Wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology), 2nd ed. Berlin: Springer-Verlag, 1963.
-
(1963)
-
-
Krischer, O.1
-
66
-
-
0000696879
-
Thermal conductivity of 2-phase materials
-
Tsao GTN. Thermal conductivity of 2-phase materials. Ind Eng Chem. 1961; 53: 395-397.
-
(1961)
Ind Eng Chem
, vol.53
, pp. 395-397
-
-
Tsao, G.T.N.1
-
67
-
-
36849124660
-
A variational approach to the theory of the effective magnetic permeability of multiphase materials
-
Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys. 1962; 33: 3125.
-
(1962)
J Appl Phys
, vol.33
, pp. 3125
-
-
Hashin, Z.1
Shtrikman, S.2
-
68
-
-
0004167016
-
Predicting the Properties of Mixtures: Mixing Rules in Science and Technology
-
New York, Mercer Dekker,
-
Nielsen LE. Predicting the Properties of Mixtures: Mixing Rules in Science and Technology. New York: Mercer Dekker, 1978.
-
(1978)
-
-
Nielsen, L.E.1
-
69
-
-
34548605202
-
Physics of inhomogeneous inorganic materials
-
Nan CW. Physics of inhomogeneous inorganic materials. Prog Mater Sci. 1993; 37: 1-117.
-
(1993)
Prog Mater Sci
, vol.37
, pp. 1-117
-
-
Nan, C.W.1
-
70
-
-
33749502780
-
Effect of aggregation on thermal conduction in colloidal nanofluids
-
Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett. 2006; 89: 143119.
-
(2006)
Appl Phys Lett
, vol.89
, pp. 143119
-
-
Prasher, R.1
Evans, W.2
Meakin, P.3
Fish, J.4
Phelan, P.5
Keblinski, P.6
-
71
-
-
8844257274
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model
-
Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. J Nanopart Res. 2004; 6: 355-361.
-
(2004)
J Nanopart Res
, vol.6
, pp. 355-361
-
-
Yu, W.1
Choi, S.U.S.2
-
72
-
-
18544377641
-
Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
-
Xie HQ, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transfer. 2005; 48: 2926-2932.
-
(2005)
Int J Heat Mass Transfer
, vol.48
, pp. 2926-2932
-
-
Xie, H.Q.1
Fujii, M.2
Zhang, X.3
-
73
-
-
26444611462
-
Model for thermal conductivity of carbon nanotube based composites
-
Xue QZ. Model for thermal conductivity of carbon nanotube based composites. Physica B. 2005; 368: 302-307.
-
(2005)
Physica B
, vol.368
, pp. 302-307
-
-
Xue, Q.Z.1
-
74
-
-
33746983549
-
A model for the thermal conductivity of nanofluids - the effect of interfacial layer
-
Leong KC, Yang C, Murshed SMS. A model for the thermal conductivity of nanofluids - the effect of interfacial layer. J Nanopart Res. 2006; 8: 245-254.
-
(2006)
J Nanopart Res
, vol.8
, pp. 245-254
-
-
Leong, K.C.1
Yang, C.2
Murshed, S.M.S.3
-
75
-
-
34250214988
-
The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
-
Feng YJ, Yu BM, Xu P, Zou MQ. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D: Appl Phys. 2007; 40: 3164-3171.
-
(2007)
J Phys D: Appl Phys
, vol.40
, pp. 3164-3171
-
-
Feng, Y.J.1
Yu, B.M.2
Xu, P.3
Zou, M.Q.4
-
76
-
-
34249895253
-
Thermophysical properties of interfacial layer in nanofluids
-
Lee D. Thermophysical properties of interfacial layer in nanofluids. Langmuir. 2007; 23: 6011-6018.
-
(2007)
Langmuir
, vol.23
, pp. 6011-6018
-
-
Lee, D.1
-
77
-
-
44249126183
-
An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation
-
Li L, Zhang YW, Ma HB, Yang M. An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation. Phys Lett A. 2008; 372: 4541-4544.
-
(2008)
Phys Lett A
, vol.372
, pp. 4541-4544
-
-
Li, L.1
Zhang, Y.W.2
Ma, H.B.3
Yang, M.4
-
78
-
-
34247323518
-
Thermal conductivity of ordered molecular water
-
Evans W, Fish J, Keblinski P. Thermal conductivity of ordered molecular water. J Chem Phys. 2007; 126: 154504.
-
(2007)
J Chem Phys
, vol.126
, pp. 154504
-
-
Evans, W.1
Fish, J.2
Keblinski, P.3
-
79
-
-
2942694254
-
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
-
Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004; 84: 4316-4318.
-
(2004)
Appl Phys Lett
, vol.84
, pp. 4316-4318
-
-
Jang, S.P.1
Choi, S.U.S.2
-
80
-
-
16244411133
-
A new thermal conductivity model for nanofluids
-
Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004; 6: 577-588.
-
(2004)
J Nanopart Res
, vol.6
, pp. 577-588
-
-
Koo, J.1
Kleinstreuer, C.2
-
81
-
-
18144386609
-
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
-
Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett. 2005; 94: 025901.
-
(2005)
Phys Rev Lett
, vol.94
, pp. 025901
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
82
-
-
27544505304
-
Effective thermal conductivity of nanofluids containing spherical nanoparticles
-
Ren Y, Xie H, Cai A. Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D: Appl Phys. 2005; 38: 3958-3961.
-
(2005)
J Phys D: Appl Phys
, vol.38
, pp. 3958-3961
-
-
Ren, Y.1
Xie, H.2
Cai, A.3
-
83
-
-
33748333479
-
Stochastic thermal transport of nanoparticle suspensions
-
Xuan YM, Li Q, Zhang X, Fujii M. Stochastic thermal transport of nanoparticle suspensions. J Appl Phys. 2006; 100: 043507.
-
(2006)
J Appl Phys
, vol.100
, pp. 043507
-
-
Xuan, Y.M.1
Li, Q.2
Zhang, X.3
Fujii, M.4
-
85
-
-
51149220754
-
Thermal boundary resistance
-
Swartz ET, Pohl RO. Thermal boundary resistance. Rev Mod Phys. 1989; 61: 605-668.
-
(1989)
Rev Mod Phys
, vol.61
, pp. 605-668
-
-
Swartz, E.T.1
Pohl, R.O.2
-
86
-
-
33749502780
-
Effect of aggregation on thermal conduction in colloidal nanofluids
-
Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett. 2006; 89: 143119.
-
(2006)
Appl Phys Lett
, vol.89
, pp. 143119
-
-
Prasher, R.1
Evans, W.2
Meakin, P.3
Fish, J.4
Phelan, P.5
Keblinski, P.6
-
87
-
-
20544463972
-
A numerical technique for computing effective thermal conductivity of fluid-particle mixtures
-
Kumar S, Murthy JY. A numerical technique for computing effective thermal conductivity of fluid-particle mixtures. Numer Heat Transfer Part B. 2005; 47: 555-572.
-
(2005)
Numer Heat Transfer Part B
, vol.47
, pp. 555-572
-
-
Kumar, S.1
Murthy, J.Y.2
-
88
-
-
29144521297
-
Differential effective medium theory for thermal conductivity in nanofluids
-
Gao L, Zhou XF. Differential effective medium theory for thermal conductivity in nanofluids. Phys Lett A. 2006; 348: 355-360.
-
(2006)
Phys Lett A
, vol.348
, pp. 355-360
-
-
Gao, L.1
Zhou, X.F.2
-
90
-
-
78349291299
-
Thermal conductivity of aqueous nanofluids containing ceria nanoparticles
-
in press.
-
Beck MP, Yuan Y, Warrier P, Teja AS. Thermal conductivity of aqueous nanofluids containing ceria nanoparticles. J Applied Phys, in press.
-
J Applied Phys
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
91
-
-
33645738437
-
Size-dependent thermal conductivity of nanoscale semiconducting systems
-
Liang LH, Li B. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B. 2006; 73: 153303.
-
(2006)
Phys Rev B
, vol.73
, pp. 153303
-
-
Liang, L.H.1
Li, B.2
-
92
-
-
0035364926
-
Melting temperatures of semiconductor nanocrystals in the mesoscopic size range
-
Zhang Z, Zhao M, Jiang Q. Melting temperatures of semiconductor nanocrystals in the mesoscopic size range. Semicond Sci Technol. 2001; 16: L33-L35.
-
(2001)
Semicond Sci Technol
, vol.16
-
-
Zhang, Z.1
Zhao, M.2
Jiang, Q.3
-
93
-
-
0003884869
-
CRC Materials Science and Engineering Handbook
-
3rd ed., Boca Raton, FL, CRC Press,
-
Alexander W, Shackelford J. CRC Materials Science and Engineering Handbook, 3rd ed. Boca Raton, FL: CRC Press, 2001.
-
(2001)
-
-
Alexander, W.1
Shackelford, J.2
-
94
-
-
78349284545
-
-
NIST webbook,
-
NIST webbook
-
-
-
-
95
-
-
4344689167
-
Handbook of Inorganic Chemicals
-
New York, McGraw-Hill,
-
Patnaik P. Handbook of Inorganic Chemicals. New York: McGraw-Hill, 2002.
-
(2002)
-
-
Patnaik, P.1
-
96
-
-
33847407147
-
Stability and thermal conductivity characteristics of nanofluids
-
Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP, Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta. 2007; 455: 70-74.
-
(2007)
Thermochim Acta
, vol.455
, pp. 70-74
-
-
Hwang, Y.1
Lee, J.K.2
Lee, C.H.3
Jung, Y.M.4
Cheong, S.I.5
Lee, C.G.6
Ku, B.C.7
Jang, S.P.8
-
97
-
-
0001657985
-
4 crystals from 3 degrees to 300 degrees K
-
4 crystals from 3 degrees to 300 degrees K. Phys Rev. 1962; 126: 427-441.
-
(1962)
Phys Rev
, vol.126
, pp. 427-441
-
-
Slack, G.A.1
-
98
-
-
0004217602
-
Perry's Chemical Engineers' Handbook
-
Perry RH, Green DW. editors., 7th ed., New York, McGraw-Hill,
-
Perry RH, Green DW. editors. Perry's Chemical Engineers' Handbook, 7th ed. New York: McGraw-Hill, 1997.
-
(1997)
-
-
-
99
-
-
0003638901
-
Lange's Handbook of Chemistry
-
14th ed., New York, McGraw-Hill,
-
Dean JA. Lange's Handbook of Chemistry, 14th ed. New York: McGraw-Hill, 1992.
-
(1992)
-
-
Dean, J.A.1
-
100
-
-
0003924110
-
Chemical Properties Handbook
-
New York, McGraw-Hill,
-
Yaws CL. Chemical Properties Handbook. New York: McGraw-Hill, 1999.
-
(1999)
-
-
Yaws, C.L.1
-
101
-
-
0004189758
-
Crystal Structure of Minerals
-
New York, Cornell University Press,
-
Bragg L, Claringbull GF, Taylor WH. Crystal Structure of Minerals. New York: Cornell University Press, 1965.
-
(1965)
-
-
Bragg, L.1
Claringbull, G.F.2
Taylor, W.H.3
-
102
-
-
0034295172
-
The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range
-
Wen Z, Zhao M, Jiang Q. The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range. J Phys Condens Matter. 2000; 12: 8819-8824.
-
(2000)
J Phys Condens Matter
, vol.12
, pp. 8819-8824
-
-
Wen, Z.1
Zhao, M.2
Jiang, Q.3
-
103
-
-
0000102019
-
Melting thermodynamics of organic nanocrystals
-
Jiang Q, Shi HX, Zhao M. Melting thermodynamics of organic nanocrystals. J Chem Phys. 1999; 111: 2176-2180.
-
(1999)
J Chem Phys
, vol.111
, pp. 2176-2180
-
-
Jiang, Q.1
Shi, H.X.2
Zhao, M.3
-
104
-
-
0003614027
-
Principles of Heat Transfer
-
New York, Wiley-Interscience,
-
Kaviany, M. Principles of Heat Transfer, New York: Wiley-Interscience, 2002.
-
(2002)
-
-
Kaviany, M.1
-
105
-
-
0242303071
-
Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K
-
and .
-
Watari K, Nakano H, Sato K, Urabe K, Ishizaki K, Cao S and Mori K. Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K. J Am Ceram Soc. 2003; 86: 1812-1814.
-
(2003)
J Am Ceram Soc
, vol.86
, pp. 1812-1814
-
-
Watari, K.1
Nakano, H.2
Sato, K.3
Urabe, K.4
Ishizaki, K.5
Cao, S.6
Mori, K.7
-
106
-
-
0032656511
-
Novel thermal properties of nanostructured materials
-
Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, DiMelfi RJ. Novel thermal properties of nanostructured materials. Mater Sci Forum. 1999; 312-314: 629-634.
-
(1999)
Mater Sci Forum
, vol.312-314
, pp. 629-634
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Soyez, G.4
Thompson, L.J.5
DiMelfi, R.J.6
-
108
-
-
33847322946
-
Study of thermal conductivity of nanofluids for the application of heat transfer fluids
-
Yoo DH, Hong KS, Yang HS. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta. 2007; 455: 66-69.
-
(2007)
Thermochim Acta
, vol.455
, pp. 66-69
-
-
Yoo, D.H.1
Hong, K.S.2
Yang, H.S.3
-
109
-
-
51849140510
-
Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 omega method
-
Oh DK, Jain A, Eaton JK, Goodson KE, Lee JS. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 omega method. Int J Heat Fluid Flow. 2008; 29: 1456-1461.
-
(2008)
Int J Heat Fluid Flow
, vol.29
, pp. 1456-1461
-
-
Oh, D.K.1
Jain, A.2
Eaton, J.K.3
Goodson, K.E.4
Lee, J.S.5
-
110
-
-
35648929436
-
Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3 omega method and mechanism analysis of heat transport
-
Wang ZL, Tang DW, Liu S, Zheng XH, Araki N. Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3 omega method and mechanism analysis of heat transport. Int J Thermophys. 2007; 28: 1255-1268.
-
(2007)
Int J Thermophys
, vol.28
, pp. 1255-1268
-
-
Wang, Z.L.1
Tang, D.W.2
Liu, S.3
Zheng, X.H.4
Araki, N.5
-
112
-
-
30344457064
-
Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
-
Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology J. 2005; 17: 35-40.
-
(2005)
Korea-Australia Rheology J
, vol.17
, pp. 35-40
-
-
Kwak, K.1
Kim, C.2
-
113
-
-
30944440044
-
Enhancement of thermal conductivity with CuO for nanofluids
-
Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Tech. 2006; 29: 72-77.
-
(2006)
Chem Eng Tech
, vol.29
, pp. 72-77
-
-
Liu, M.S.1
Lin, M.C.2
Huang, I.T.3
Wang, C.C.4
-
114
-
-
65449161444
-
Thermal performance enhancement in nanofluids containing diamond nanoparticles
-
Xie H, Yu W, Li Y. Thermal performance enhancement in nanofluids containing diamond nanoparticles. J Phys D: Appl Phys. 2009; 42: 095413.
-
(2009)
J Phys D: Appl Phys
, vol.42
, pp. 095413
-
-
Xie, H.1
Yu, W.2
Li, Y.3
-
115
-
-
0036477316
-
Thermal conductivity of suspension containing SiC particles
-
Xie HQ, Wang JC, Xi TG, Liu Y, Ai F. Thermal conductivity of suspension containing SiC particles. J Mater Sci Lett. 2002; 21: 193-195.
-
(2002)
J Mater Sci Lett
, vol.21
, pp. 193-195
-
-
Xie, H.Q.1
Wang, J.C.2
Xi, T.G.3
Liu, Y.4
Ai, F.5
-
116
-
-
63749098385
-
An investigation of silicon carbide-water nanofluid for heat transfer applications
-
Singh D, Timofeeva W, Yu W, Routbort J, Smith D, Lopez-Cepero JM. An investigation of silicon carbide-water nanofluid for heat transfer applications. J Appl Phys. 2009; 105: 064306.
-
(2009)
J Appl Phys
, vol.105
, pp. 064306
-
-
Singh, D.1
Timofeeva, W.2
Yu, W.3
Routbort, J.4
Smith, D.5
Lopez-Cepero, J.M.6
-
117
-
-
77953641914
-
The limiting behavior of the thermal conductivity of nanoparticles and nanofluids
-
in press; DOI 10.1063/1.3354094.
-
Teja AS, Beck MP, Yuan Y, Warrier P. The limiting behavior of the thermal conductivity of nanoparticles and nanofluids. J. Appl Phys., in press; DOI 10.1063/1.3354094.
-
J. Appl Phys
-
-
Teja, A.S.1
Beck, M.P.2
Yuan, Y.3
Warrier, P.4
-
119
-
-
33846934416
-
Atomistic modeling of amorphous silicon carbide using a bond-order potential
-
Devanathan R, Gao F, Weber WJ. Atomistic modeling of amorphous silicon carbide using a bond-order potential. Nucl Instr Meth Phys Res B. 2007; 255: 130-135.
-
(2007)
Nucl Instr Meth Phys Res B
, vol.255
, pp. 130-135
-
-
Devanathan, R.1
Gao, F.2
Weber, W.J.3
|