메뉴 건너뛰기




Volumn 79, Issue , 2014, Pages 126-136

Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation

Author keywords

Aerogel; Coupling effect; Experiment; Nanoporous material; Thermal conductivity

Indexed keywords

AEROGELS; EXPERIMENTS; GASES; POLYBUTADIENES; POROUS MATERIALS; SILICA GEL; THERMAL CONDUCTIVITY;

EID: 84906689054     PISSN: 00179310     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijheatmasstransfer.2014.07.098     Document Type: Article
Times cited : (105)

References (45)
  • 3
    • 80051796445 scopus 로고    scopus 로고
    • Ultralow density carbon aerogels with low thermal conductivity up to 2000 °c
    • J.Z. Feng, J. Feng, Y.G. Jiang, and C.R. Zhang Ultralow density carbon aerogels with low thermal conductivity up to 2000°C Mater. Lett. 65 2011 2000 3454 3456
    • (2000) Mater. Lett. , vol.65 , Issue.2011 , pp. 3454-3456
    • Feng, J.Z.1    Feng, J.2    Jiang, Y.G.3    Zhang, C.R.4
  • 4
    • 79951518322 scopus 로고    scopus 로고
    • Aerogel insulation for building applications: A state-Of-The-Art review
    • R. Baetens, B.P. Jelle, and A. Gustavsen Aerogel insulation for building applications: a state-of-the-art review Energy Buildings 43 2011 761 769
    • (2011) Energy Buildings , vol.43 , pp. 761-769
    • Baetens, R.1    Jelle, B.P.2    Gustavsen, A.3
  • 5
    • 84865595828 scopus 로고    scopus 로고
    • Heat transfer modeling in vacuum insulation panels containing nanoporous silicon - A review
    • M. Bouquerel, T. Duforestel, D. Baillis, and G. Rusaouen Heat transfer modeling in vacuum insulation panels containing nanoporous silicon - a review Energy Buildings 54 2012 320 336
    • (2012) Energy Buildings , vol.54 , pp. 320-336
    • Bouquerel, M.1    Duforestel, T.2    Baillis, D.3    Rusaouen, G.4
  • 6
    • 0028392378 scopus 로고
    • Thermal properties of organic and inorganic aerogels
    • L.W. Hrubesh, and R.W. Pekala Thermal properties of organic and inorganic aerogels J. Mater. Res. 9 1994 731 738
    • (1994) J. Mater. Res. , vol.9 , pp. 731-738
    • Hrubesh, L.W.1    Pekala, R.W.2
  • 7
    • 34247134445 scopus 로고    scopus 로고
    • Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity
    • DOI 10.1016/j.colsurfa.2007.01.020, PII S0927775707000453
    • G. Reichenauer, U. Heinemann, and H.P. Ebert Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity Colloids Surf. A 300 2007 204 210 (Pubitemid 46584796)
    • (2007) Colloids and Surfaces A: Physicochemical and Engineering Aspects , vol.300 , Issue.1-2 SPEC. ISS. , pp. 204-210
    • Reichenauer, G.1    Heinemann, U.2    Ebert, H.-P.3
  • 8
    • 70349739176 scopus 로고    scopus 로고
    • Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm
    • K. Swimm, G. Reichenauer, S. Vidi, and H.P. Ebert Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm Int. J. Thermophys. 30 2009 1329 1342
    • (2009) Int. J. Thermophys. , vol.30 , pp. 1329-1342
    • Swimm, K.1    Reichenauer, G.2    Vidi, S.3    Ebert, H.P.4
  • 9
    • 70349748433 scopus 로고    scopus 로고
    • Thermal transport properties of functionally graded carbon aerogels
    • F. Hemberger, S. Weis, G. Reichenauer, and H.P. Ebert Thermal transport properties of functionally graded carbon aerogels Int. J. Thermophys. 30 2009 1357 1371
    • (2009) Int. J. Thermophys. , vol.30 , pp. 1357-1371
    • Hemberger, F.1    Weis, S.2    Reichenauer, G.3    Ebert, H.P.4
  • 11
    • 85013239539 scopus 로고
    • Transport properties of gas in silica aerogel
    • S.Q. Zeng, A. Hunt, and R. Greif Transport properties of gas in silica aerogel J. Non-Cryst. Solids 186 1995 264 270
    • (1995) J. Non-Cryst. Solids , vol.186 , pp. 264-270
    • Zeng, S.Q.1    Hunt, A.2    Greif, R.3
  • 12
    • 0033741031 scopus 로고    scopus 로고
    • Conduction and radiation heat transfer in high-porosity fiber thermal insulation
    • S.C. Lee, and G.R. Cunnington Conduction and radiation heat transfer in high-porosity fiber thermal insulation J. Thermophys. Heat Transfer 14 2000 121 136
    • (2000) J. Thermophys. Heat Transfer , vol.14 , pp. 121-136
    • Lee, S.C.1    Cunnington, G.R.2
  • 13
    • 79953048242 scopus 로고    scopus 로고
    • Thermal conductivities study on silica aerogel and its composite insulation materials
    • G.S. Wei, Y.S. Liu, X.X. Zhang, F. Yu, and X.Z. Du Thermal conductivities study on silica aerogel and its composite insulation materials Int. J. Heat Mass Transfer 54 2011 2355 2366
    • (2011) Int. J. Heat Mass Transfer , vol.54 , pp. 2355-2366
    • Wei, G.S.1    Liu, Y.S.2    Zhang, X.X.3    Yu, F.4    Du, X.Z.5
  • 14
    • 84871802287 scopus 로고    scopus 로고
    • Theoretical study on thermal conductivities of silica aerogel composite insulating material
    • T. Xie, Y.L. He, and Z.J. Hu Theoretical study on thermal conductivities of silica aerogel composite insulating material Int. J. Heat Mass Transfer 58 2013 540 552
    • (2013) Int. J. Heat Mass Transfer , vol.58 , pp. 540-552
    • Xie, T.1    He, Y.L.2    Hu, Z.J.3
  • 15
    • 84864326498 scopus 로고    scopus 로고
    • Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels
    • J.J. Zhao, Y.Y. Duan, X.D. Wang, and B.X. Wang Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels J. Nanopart. Res. 14 2012 1024
    • (2012) J. Nanopart. Res. , vol.14 , pp. 1024
    • Zhao, J.J.1    Duan, Y.Y.2    Wang, X.D.3    Wang, B.X.4
  • 16
    • 79051469453 scopus 로고    scopus 로고
    • Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media
    • S. Spagnol, B. Lartigue, A. Trombe, and V. Gibiat Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media Europhys. Lett. 78 2007 46005
    • (2007) Europhys. Lett. , vol.78 , pp. 46005
    • Spagnol, S.1    Lartigue, B.2    Trombe, A.3    Gibiat, V.4
  • 17
    • 84862815818 scopus 로고    scopus 로고
    • A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure
    • J.J. Zhao, Y.Y. Duan, X.D. Wang, and B.X. Wang A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure J. Non-Cryst. Solids 358 2012 1287 1297
    • (2012) J. Non-Cryst. Solids , vol.358 , pp. 1287-1297
    • Zhao, J.J.1    Duan, Y.Y.2    Wang, X.D.3    Wang, B.X.4
  • 19
    • 84894823295 scopus 로고    scopus 로고
    • Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity
    • C. Bi, G.H. Tang, and Z.J. Hu Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity Int. J. Heat Mass Transfer 73 2014 103 109
    • (2014) Int. J. Heat Mass Transfer , vol.73 , pp. 103-109
    • Bi, C.1    Tang, G.H.2    Hu, Z.J.3
  • 20
    • 35948983443 scopus 로고    scopus 로고
    • Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations
    • S.S. Mahajan, and G. Subbarayan Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations Phys. Rev. E 76 2007 056701
    • (2007) Phys. Rev. e , vol.76 , pp. 056701
    • Mahajan, S.S.1    Subbarayan, G.2
  • 21
    • 18144381583 scopus 로고    scopus 로고
    • Heat transfer between two nanoparticles through near field interaction
    • G. Domingues, S. Volz, K. Joulain, and J.J. Greffet Heat transfer between two nanoparticles through near field interaction Phys. Rev. Lett. 94 2005 085901
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 085901
    • Domingues, G.1    Volz, S.2    Joulain, K.3    Greffet, J.J.4
  • 23
    • 40849094591 scopus 로고    scopus 로고
    • Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films
    • J. Randrianalisoa, and D. Baillis Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films J. Appl. Phys. 103 2008 053502
    • (2008) J. Appl. Phys. , vol.103 , pp. 053502
    • Randrianalisoa, J.1    Baillis, D.2
  • 24
    • 33748492119 scopus 로고    scopus 로고
    • Monte Carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires
    • D. Lacroix, K. Joulain, D. Terris, and D. Lemonnier Monte Carlo simulation of phonon confinement in silicon nanostructures: application to the determination of the thermal conductivity of silicon nanowires Appl. Phys. Lett. 89 2006 103104
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 103104
    • Lacroix, D.1    Joulain, K.2    Terris, D.3    Lemonnier, D.4
  • 25
    • 53949097136 scopus 로고    scopus 로고
    • Monte Carlo simulation of steady-state microscale phonon heat transport
    • J. Randrianalisoa, and D. Baillis Monte Carlo simulation of steady-state microscale phonon heat transport ASME J. Heat Transfer 130 2008 072404
    • (2008) ASME J. Heat Transfer , vol.130 , pp. 072404
    • Randrianalisoa, J.1    Baillis, D.2
  • 26
    • 33644511446 scopus 로고    scopus 로고
    • Monte Carlo transient phonon transport in silicon and germanium at nanoscales
    • D. Lacroix, K. Joulain, and D. Lemonnier Monte Carlo transient phonon transport in silicon and germanium at nanoscales Phys. Rev. B 72 2005 064305
    • (2005) Phys. Rev. B , vol.72 , pp. 064305
    • Lacroix, D.1    Joulain, K.2    Lemonnier, D.3
  • 27
    • 63049116767 scopus 로고    scopus 로고
    • Prediction of thermal conductivity of nanostructures: Influence of phonon dispersion approximation
    • D. Baillis, and J. Randrianalisoa Prediction of thermal conductivity of nanostructures: influence of phonon dispersion approximation Int. J. Heat Mass Transfer 52 2009 2516 2527
    • (2009) Int. J. Heat Mass Transfer , vol.52 , pp. 2516-2527
    • Baillis, D.1    Randrianalisoa, J.2
  • 28
    • 70350452967 scopus 로고    scopus 로고
    • Combined analytical and phonon-tracking approaches to model thermal conductivity of etched and annealed nanoporous silicon
    • J. Randrianalisoa, and D. Baillis Combined analytical and phonon-tracking approaches to model thermal conductivity of etched and annealed nanoporous silicon Adv. Eng. Mater. 11 2009 852 861
    • (2009) Adv. Eng. Mater. , vol.11 , pp. 852-861
    • Randrianalisoa, J.1    Baillis, D.2
  • 29
    • 0001858610 scopus 로고    scopus 로고
    • The effective stagnant thermal conductivity of porous media with periodic structures
    • P. Cheng, and C.T. Hsu The effective stagnant thermal conductivity of porous media with periodic structures J. Porous Media 2 1999 19 38
    • (1999) J. Porous Media , vol.2 , pp. 19-38
    • Cheng, P.1    Hsu, C.T.2
  • 30
    • 0030449421 scopus 로고    scopus 로고
    • Nonlocal and non-equilibrium heat conduction in the vicinity of nanoparticles
    • G. Chen Nonlocal and non-equilibrium heat conduction in the vicinity of nanoparticles ASME J. Heat Transfer 118 1996 539 545
    • (1996) ASME J. Heat Transfer , vol.118 , pp. 539-545
    • Chen, G.1
  • 32
    • 84869078800 scopus 로고    scopus 로고
    • Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution
    • C. Bi, G.H. Tang, and W.Q. Tao Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution J. Non-Cryst. Solids 358 2012 3124 3128
    • (2012) J. Non-Cryst. Solids , vol.358 , pp. 3124-3128
    • Bi, C.1    Tang, G.H.2    Tao, W.Q.3
  • 34
    • 0029107520 scopus 로고
    • Geometric structure and thermal conductivity of porous medium silica aerogel
    • S.Q. Zeng, A. Hunt, and R. Greif Geometric structure and thermal conductivity of porous medium silica aerogel ASME J. Heat Transfer 117 1995 1055 1058
    • (1995) ASME J. Heat Transfer , vol.117 , pp. 1055-1058
    • Zeng, S.Q.1    Hunt, A.2    Greif, R.3
  • 35
    • 0024867785 scopus 로고
    • Correlation between thermal conductivity and elasto-mechanical properties of compressed porous media
    • O. Nilsson, G. Rüschenpöhler, J. Gross, and J. Fricke Correlation between thermal conductivity and elasto-mechanical properties of compressed porous media High Temp. - High Pressures 21 1989 267 274
    • (1989) High Temp. - High Pressures , vol.21 , pp. 267-274
    • Nilsson, O.1    Rüschenpöhler, G.2    Gross, J.3    Fricke, J.4
  • 36
    • 84877992252 scopus 로고    scopus 로고
    • Effective thermal conductivity of the solid backbone of aerogel
    • C. Bi, and G.H. Tang Effective thermal conductivity of the solid backbone of aerogel Int. J. Heat Mass Transfer 64 2013 452 456
    • (2013) Int. J. Heat Mass Transfer , vol.64 , pp. 452-456
    • Bi, C.1    Tang, G.H.2
  • 39
    • 0035300327 scopus 로고    scopus 로고
    • Phonon heat conduction in thin films: Impacts of thermal boundary resistance and internal heat generation
    • DOI 10.1115/1.1351169
    • T. Zeng, and G. Chen Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation ASME J. Heat Transfer 123 2001 340 347 (Pubitemid 32704539)
    • (2001) Journal of Heat Transfer , vol.123 , Issue.2 , pp. 340-347
    • Zeng, T.1    Chen, G.2
  • 41
    • 36048937935 scopus 로고    scopus 로고
    • Determination of the local thermal diffusivity of inhomogeneous samples by a modified laser-flash method
    • DOI 10.1007/s10765-007-0161-7
    • F. Hemberger, H.P. Ebert, and J. Fricke Determination of the local thermal diffusivity of inhomogeneous samples by a modified laser-flash method Int. J. Thermophys. 28 2007 1509 1521 (Pubitemid 350084911)
    • (2007) International Journal of Thermophysics , vol.28 , Issue.5 , pp. 1509-1521
    • Hemberger, F.1    Ebert, H.-P.2    Fricke, J.3
  • 43
    • 0003397084 scopus 로고    scopus 로고
    • tenth ed. China Machine Press Beijing pp. 509
    • J.P. Holman Heat Transfer tenth ed. 2011 China Machine Press Beijing pp. 509
    • (2011) Heat Transfer
    • Holman, J.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.