-
1
-
-
78650735977
-
Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications
-
Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urás F, Vega-Cantú YI, Rodŕguez-Macás FJ, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 2010;5(4):351-72.
-
(2010)
Nano Today
, vol.5
, Issue.4
, pp. 351-372
-
-
Terrones, M.1
Botello-Méndez, A.R.2
Campos-Delgado, J.3
López-Urás, F.4
Vega-Cantú, Y.I.5
Rodŕguez-Macás, F.J.6
-
2
-
-
40049093097
-
Chemically derived ultrasmooth graphene nanoribbon semiconductors
-
Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 2008;319:1229.
-
(2008)
Science
, vol.319
, pp. 1229
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
3
-
-
44149119344
-
Roomtemperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
-
Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Roomtemperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 2008;100:206803.
-
(2008)
Phys Rev Lett
, vol.100
, pp. 206803
-
-
Wang, X.1
Ouyang, Y.2
Li, X.3
Wang, H.4
Guo, J.5
Dai, H.6
-
4
-
-
84870424667
-
Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons
-
Liang X, Wi S. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons. ACS Nano 2012;6(11):9700-10.
-
(2012)
ACS Nano
, vol.6
, Issue.11
, pp. 9700-9710
-
-
Liang, X.1
Wi, S.2
-
5
-
-
84883815281
-
Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography
-
Son JG, Son M, Moon K-J, Lee BH, Myoung J-M, Strano MS, et al. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv Mater 2013;25(34):4723-8.
-
(2013)
Adv Mater
, vol.25
, Issue.34
, pp. 4723-4728
-
-
Son, J.G.1
Son, M.2
Moon, K.-J.3
Lee, B.H.4
Myoung, J.-M.5
Strano, M.S.6
-
6
-
-
79961164449
-
Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes
-
Ye Y, Gan L, Dai L, Meng H, Wei F, Dai Y, et al. Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. J Mater Chem 2011;21(32):11760-3.
-
(2011)
J Mater Chem
, vol.21
, Issue.32
, pp. 11760-11763
-
-
Ye, Y.1
Gan, L.2
Dai, L.3
Meng, H.4
Wei, F.5
Dai, Y.6
-
7
-
-
33751110207
-
Half-metallic graphene nanoribbons
-
Son Y-W, Cohen ML, Louie SG. Half-metallic graphene nanoribbons. Nature 2006;444(7117):347-9.
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 347-349
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
8
-
-
43049091887
-
Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection
-
Wimmer M, AdagideliI, Berber S, Tománek D, Richter K. Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys Rev Lett 2008;100(17):177207.
-
(2008)
Phys Rev Lett
, vol.100
, Issue.17
, pp. 177207
-
-
Wimmer, M.1
Adagideli, I.2
Berber, S.3
Tománek, D.4
Richter, K.5
-
9
-
-
46749156195
-
Prediction of very large values of magnetoresistance in a graphene nanoribbon device
-
Kim WY, Kim KS. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nanotechnol 2008;3(7):408-12.
-
(2008)
Nat Nanotechnol
, vol.3
, Issue.7
, pp. 408-412
-
-
Kim, W.Y.1
Kim, K.S.2
-
11
-
-
77957828990
-
Disorder-based graphene spintronics
-
Rocha AR, Thiago BM, Fazzio A, Antô nio JRDS. Disorder-based graphene spintronics. Nanotechnology 2010;21(34):345202.
-
(2010)
Nanotechnology
, vol.21
, Issue.34
, pp. 345202
-
-
Rocha, A.R.1
Thiago, B.M.2
Fazzio, A.3
Nio Jrds, A.4
-
13
-
-
33846361065
-
Electronic structure and stability of semiconducting graphene nanoribbons
-
Barone V, Hod O, Scuseria GE. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 2006;6:2748.
-
(2006)
Nano Lett
, vol.6
, pp. 2748
-
-
Barone, V.1
Hod, O.2
Scuseria, G.E.3
-
14
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
Han MY, Özyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 2007;98(20):206805.
-
(2007)
Phys Rev Lett
, vol.98
, Issue.20
, pp. 206805
-
-
Han, M.Y.1
Özyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
15
-
-
84880782130
-
Tuning the band gap of graphene nanoribbons synthesized from molecular precursors
-
Chen Y-C, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013;7(7):6123-8.
-
(2013)
ACS Nano
, vol.7
, Issue.7
, pp. 6123-6128
-
-
Chen, Y.-C.1
De Oteyza, D.G.2
Pedramrazi, Z.3
Chen, C.4
Fischer, F.R.5
Crommie, M.F.6
-
16
-
-
0030492538
-
Peculiar localized state at zigzag graphite edge
-
Fujita M, Wakabayashi K, Nakada K, Kusakabe K. Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 1996;65(7):1920-3.
-
(1996)
J Phys Soc Jpn
, vol.65
, Issue.7
, pp. 1920-1923
-
-
Fujita, M.1
Wakabayashi, K.2
Nakada, K.3
Kusakabe, K.4
-
17
-
-
29544437003
-
Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states
-
Lee H, Son Y-W, Park N, Han S, Yu J. Magnetic ordering at the edges of graphitic fragments: magnetic tail interactions between the edge-localized states. Phys Rev B 2005;72(17):174431.
-
(2005)
Phys Rev B
, vol.72
, Issue.17
, pp. 174431
-
-
Lee, H.1
Son, Y.-W.2
Park, N.3
Han, S.4
Yu, J.5
-
18
-
-
84859707219
-
Enhanced carrier transport along edges of graphene devices
-
Chae J, Jung S, Woo S, Baek H, Ha J, Song YJ, et al. Enhanced carrier transport along edges of graphene devices. Nano Lett 2012;12(4):1839-44.
-
(2012)
Nano Lett
, vol.12
, Issue.4
, pp. 1839-1844
-
-
Chae, J.1
Jung, S.2
Woo, S.3
Baek, H.4
Ha, J.5
Song, Y.J.6
-
19
-
-
84894263260
-
Exceptional ballistic transport in epitaxial graphene nanoribbons
-
Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb I, et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014;506(7488):349-54.
-
(2014)
Nature
, vol.506
, Issue.7488
, pp. 349-354
-
-
Baringhaus, J.1
Ruan, M.2
Edler, F.3
Tejeda, A.4
Sicot, M.5
Taleb, I.6
-
20
-
-
77954904482
-
Atomically precise bottom-up fabrication of graphene nanoribbons
-
Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010;466(7305):470-3.
-
(2010)
Nature
, vol.466
, Issue.7305
, pp. 470-473
-
-
Cai, J.1
Ruffieux, P.2
Jaafar, R.3
Bieri, M.4
Braun, T.5
Blankenburg, S.6
-
21
-
-
80052561926
-
Graphene nanoribbons with smooth edges behave as quantum wires
-
Wang X, Ouyang Y, Jiao L, Wang H, Xie L, Wu J, et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nat Nanotechnol 2011;6(9):563-7.
-
(2011)
Nat Nanotechnol
, vol.6
, Issue.9
, pp. 563-567
-
-
Wang, X.1
Ouyang, Y.2
Jiao, L.3
Wang, H.4
Xie, L.5
Wu, J.6
-
22
-
-
66249123595
-
Ndoping of graphene through electrothermal reactions with ammonia
-
Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, et al. Ndoping of graphene through electrothermal reactions with ammonia. Science 2009;324(5928):768-71.
-
(2009)
Science
, vol.324
, Issue.5928
, pp. 768-771
-
-
Wang, X.1
Li, X.2
Zhang, L.3
Yoon, Y.4
Weber, P.K.5
Wang, H.6
-
23
-
-
84870020877
-
Defects and doping and their role in functionalizing graphene
-
Pantelides ST, Puzyrev Y, Tsetseris L, Wang B. Defects and doping and their role in functionalizing graphene. MRS Bull 2012;37(12):1187-94.
-
(2012)
MRS Bull
, vol.37
, Issue.12
, pp. 1187-1194
-
-
Pantelides, S.T.1
Puzyrev, Y.2
Tsetseris, L.3
Wang, B.4
-
24
-
-
77954596786
-
Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons
-
Yu S-S, ZhengW-T. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2010;2(7):1069-82.
-
(2010)
Nanoscale
, vol.2
, Issue.7
, pp. 1069-1082
-
-
Yu, S.-S.1
Zheng, W.-T.2
-
25
-
-
34547293456
-
Electronic and transport properties of boron-doped graphene nanoribbons
-
Martins TB, Miwa RH, da Silva AJR, Fazzio A. Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 2007;98(19):196803.
-
(2007)
Phys Rev Lett
, vol.98
, Issue.19
, pp. 196803
-
-
Martins, T.B.1
Miwa, R.H.2
Da Silva, A.J.R.3
Fazzio, A.4
-
26
-
-
37549038601
-
Making a field effect transistor on a single graphene nanoribbon by selective doping
-
Huang B, Yan Q, Zhou G, Wu J, Gu B-L, Duan W, et al. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl Phys Lett 2007;91(25):253122-3.
-
(2007)
Appl Phys Lett
, vol.91
, Issue.25
, pp. 253122-253123
-
-
Huang, B.1
Yan, Q.2
Zhou, G.3
Wu, J.4
Gu, B.-L.5
Duan, W.6
-
27
-
-
61449261199
-
R-and p-defects at graphene nanoribbon edges: Building spin filters
-
Martins TB, da Silva AJR, Miwa RH, Fazzio A. R-and p-defects at graphene nanoribbon edges: building spin filters. Nano Lett 2008;8(8):2293-8.
-
(2008)
Nano Lett
, vol.8
, Issue.8
, pp. 2293-2298
-
-
Martins, T.B.1
Da Silva, A.J.R.2
Miwa, R.H.3
Fazzio, A.4
-
28
-
-
40849085075
-
First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges
-
Yu SS, Zheng WT, Wen QB, Jiang Q. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon 2008;46: 537.
-
(2008)
Carbon
, vol.46
, pp. 537
-
-
Yu, S.S.1
Zheng, W.T.2
Wen, Q.B.3
Jiang, Q.4
-
29
-
-
62849110174
-
Anomalous doping effects on charge transport in graphene nanoribbons
-
Biel B, Blase X, Triozon F, Roche S. Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett 2009;102:096803.
-
(2009)
Phys Rev Lett
, vol.102
, pp. 096803
-
-
Biel, B.1
Blase, X.2
Triozon, F.3
Roche, S.4
-
30
-
-
77954692730
-
Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons
-
Zheng XH, Rungger I, Zeng Z, Sanvito S. Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Phys Rev B 2009;80(23):235426.
-
(2009)
Phys Rev B
, vol.80
, Issue.23
, pp. 235426
-
-
Zheng, X.H.1
Rungger, I.2
Zeng, Z.3
Sanvito, S.4
-
31
-
-
79961035164
-
Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles
-
Cruz-Silva E, Barnett ZM, Sumpter BG, Meunier V. Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Phys Rev B 2011;83:155445.
-
(2011)
Phys Rev B
, vol.83
, pp. 155445
-
-
Cruz-Silva, E.1
Barnett, Z.M.2
Sumpter, B.G.3
Meunier, V.4
-
32
-
-
33744691386
-
Ground state of the electron gas by a stochastic method
-
Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980;45(7):566-9.
-
(1980)
Phys Rev Lett
, vol.45
, Issue.7
, pp. 566-569
-
-
Ceperley, D.M.1
Alder, B.J.2
-
33
-
-
0037171091
-
The SIESTA method for ab initio order-N materials simulation
-
José MS, Emilio A, Julian DG, Alberto G, Javier J, Pablo O, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 2002;14:2745.
-
(2002)
J Phys Condens Matter
, vol.14
, pp. 2745
-
-
José, M.S.1
Emilio, A.2
Julian, D.G.3
Alberto, G.4
Javier, J.5
Pablo, O.6
-
34
-
-
33645426115
-
Efficient pseudopotentials for planewave calculations
-
Troullier N, Martins JL. Efficient pseudopotentials for planewave calculations. Phys Rev B 1991;43(3):1993-2006.
-
(1991)
Phys Rev B
, vol.43
, Issue.3
, pp. 1993-2006
-
-
Troullier, N.1
Martins, J.L.2
-
35
-
-
0037091644
-
Density-functional method for nonequilibrium electron transport
-
Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K. Density-functional method for nonequilibrium electron transport. Phys Rev B 2002;65(16):165401.
-
(2002)
Phys Rev B
, vol.65
, Issue.16
, pp. 165401
-
-
Brandbyge, M.1
Mozos, J.-L.2
Ordejón, P.3
Taylor, J.4
Stokbro, K.5
-
36
-
-
33745296278
-
Firstprinciples approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices
-
Kim Y-H, Tahir-Kheli J, Schultz PA, Goddard WA. Firstprinciples approach to the charge-transport characteristics of monolayer molecular-electronics devices: application to hexanedithiolate devices. Phys Rev B 2006;73(23):235419.
-
(2006)
Phys Rev B
, vol.73
, Issue.23
, pp. 235419
-
-
Kim, Y.-H.1
Tahir-Kheli, J.2
Schultz, P.A.3
Goddard, W.A.4
-
37
-
-
18144428373
-
First-principles study of the switching mechanism of [2]catenane molecular electronic devices
-
Kim Y-H, Jang SS, Jang YH, Goddard WA. First-principles study of the switching mechanism of [2]catenane molecular electronic devices. Phys Rev Lett 2005;94(15):156801.
-
(2005)
Phys Rev Lett
, vol.94
, Issue.15
, pp. 156801
-
-
Kim, Y.-H.1
Jang, S.S.2
Jang, Y.H.3
Goddard, W.A.4
|