메뉴 건너뛰기




Volumn 151, Issue P1, 2015, Pages 296-303

Steel plates fault diagnosis on the basis of support vector machines

Author keywords

Fault diagnosis; Machine learning; Parameter optimizing; Steel plate faults dataset; Support vector machine

Indexed keywords

BALANCING; FAILURE ANALYSIS; LEARNING SYSTEMS; SUPPORT VECTOR MACHINES;

EID: 84922698741     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.09.036     Document Type: Article
Times cited : (50)

References (34)
  • 1
    • 19044365246 scopus 로고    scopus 로고
    • Model-based fault-detection and diagnosis-status and applications
    • Isermann R. Model-based fault-detection and diagnosis-status and applications. Annu. Rev. Control 2005, 29(1):71-85.
    • (2005) Annu. Rev. Control , vol.29 , Issue.1 , pp. 71-85
    • Isermann, R.1
  • 2
    • 84867317492 scopus 로고    scopus 로고
    • Fault detection for markovian jump systems with sensor saturations and randomly varying nonlinearities
    • Dong H., Wang Z., Gao H. Fault detection for markovian jump systems with sensor saturations and randomly varying nonlinearities. Circuits and Systems I: Regular Papers, IEEE Transactions on 2012, 59(10):2354-2362.
    • (2012) Circuits and Systems I: Regular Papers, IEEE Transactions on , vol.59 , Issue.10 , pp. 2354-2362
    • Dong, H.1    Wang, Z.2    Gao, H.3
  • 3
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin S., Ding S.X., Haghani A., Hao H., Zhang P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 2012, 22(9):1567-1581.
    • (2012) J. Process Control , vol.22 , Issue.9 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 4
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo A., Yang B.-S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2007, 21(6):2560-2574.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2
  • 5
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks. fundamentals, computing, design, and application
    • Basheer I., Hajmeer M. Artificial neural networks. fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43(1):3-31.
    • (2000) J. Microbiol. Methods , vol.43 , Issue.1 , pp. 3-31
    • Basheer, I.1    Hajmeer, M.2
  • 6
    • 84899481774 scopus 로고    scopus 로고
    • A review on basic data-driven approaches for industrial process monitoring
    • Yin S., Ding S., Xie X., Luo H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 2014, 61(11):6418-6428.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.11 , pp. 6418-6428
    • Yin, S.1    Ding, S.2    Xie, X.3    Luo, H.4
  • 9
    • 24344508665 scopus 로고    scopus 로고
    • Non-adult dental age assessment. correspondence analysis and linear regression versus Bayesian predictions
    • Braga J., Heuze Y., Chabadel O., Sonan N., Gueramy A. Non-adult dental age assessment. correspondence analysis and linear regression versus Bayesian predictions. Int. J. Legal Med. 2005, 119(5):260-274.
    • (2005) Int. J. Legal Med. , vol.119 , Issue.5 , pp. 260-274
    • Braga, J.1    Heuze, Y.2    Chabadel, O.3    Sonan, N.4    Gueramy, A.5
  • 10
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemom. Intell. Lab. Syst. 2000, 51(1):81-93.
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , Issue.1 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 11
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach F.R., Jordan M.I. Kernel independent component analysis. J. Mach. Learn. Res. 2003, 3:1-48.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 12
    • 84910031522 scopus 로고    scopus 로고
    • Improved pls focused on key performance indictor related fault diagnosis
    • Yin S., Zhu X., Kaynak O. Improved pls focused on key performance indictor related fault diagnosis. IEEE Trans. Ind. Electron. 2014.
    • (2014) IEEE Trans. Ind. Electron.
    • Yin, S.1    Zhu, X.2    Kaynak, O.3
  • 13
    • 13544269338 scopus 로고    scopus 로고
    • Application of svm and ann for intrusion detection
    • Chen W.-H., Hsu S.-H., Shen H.-P. Application of svm and ann for intrusion detection. Comput. Oper. Res. 2005, 32(10):2617-2634.
    • (2005) Comput. Oper. Res. , vol.32 , Issue.10 , pp. 2617-2634
    • Chen, W.-H.1    Hsu, S.-H.2    Shen, H.-P.3
  • 14
    • 84901052346 scopus 로고    scopus 로고
    • Data-driven design of robust fault detection system for wind turbines
    • Yin S., Wang G., Karimi H.R. Data-driven design of robust fault detection system for wind turbines. Mechatronics 2014, 24(4):298-306.
    • (2014) Mechatronics , vol.24 , Issue.4 , pp. 298-306
    • Yin, S.1    Wang, G.2    Karimi, H.R.3
  • 15
    • 84886674516 scopus 로고    scopus 로고
    • A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill
    • S. Ding, S. Yin, K. Peng, H. Hao, B. Shen, A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill 9(4) (2012) 2239-2247.
    • (2012) , vol.9 , Issue.4 , pp. 2239-2247
    • Ding, S.1    Yin, S.2    Peng, K.3    Hao, H.4    Shen, B.5
  • 16
    • 74249108882 scopus 로고    scopus 로고
    • Efficient recursive principal component analysis algorithms for process monitoring
    • Elshenawy L.M., Yin S., Naik A.S., Ding S.X. Efficient recursive principal component analysis algorithms for process monitoring. Ind. Eng. Chem. Res. 2009, 49(1):252-259.
    • (2009) Ind. Eng. Chem. Res. , vol.49 , Issue.1 , pp. 252-259
    • Elshenawy, L.M.1    Yin, S.2    Naik, A.S.3    Ding, S.X.4
  • 17
    • 84871973071 scopus 로고    scopus 로고
    • An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications
    • Ding S.X., Zhang P., Yin S., Ding E.L. An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications. IEEE Trans. Ind. Inform. 2013, 9(1):462-471.
    • (2013) IEEE Trans. Ind. Inform. , vol.9 , Issue.1 , pp. 462-471
    • Ding, S.X.1    Zhang, P.2    Yin, S.3    Ding, E.L.4
  • 18
    • 84870160474 scopus 로고    scopus 로고
    • Data-driven adaptive observer for fault diagnosis
    • Yin S., Yang X., Karimi H.R. Data-driven adaptive observer for fault diagnosis. Math. Probl. Eng. 2012, 2012.
    • (2012) Math. Probl. Eng. , vol.2012
    • Yin, S.1    Yang, X.2    Karimi, H.R.3
  • 20
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • Koltchinskii V. Rademacher penalties and structural risk minimization. IEEE Trans. Inf. Theory 2001, 47(5):1902-1914.
    • (2001) IEEE Trans. Inf. Theory , vol.47 , Issue.5 , pp. 1902-1914
    • Koltchinskii, V.1
  • 21
    • 84902536552 scopus 로고    scopus 로고
    • Robust pls approach for kpi-related prediction and diagnosis against outliers and missing data
    • ahead-of-print.
    • S. Yin, G. Wang, X. Yang, Robust pls approach for kpi-related prediction and diagnosis against outliers and missing data, Int. J. Syst. Sci., no. (2014) 1-8, ahead-of-print.
    • (2014) Int. J. Syst. Sci. , pp. 1-8
    • Yin, S.1    Wang, G.2    Yang, X.3
  • 22
    • 34547825561 scopus 로고    scopus 로고
    • An efficient alternative to svm based recursive feature elimination with applications in natural language processing and bioinformatics
    • J. Bedo, C. Sanderson, A. Kowalczyk, An efficient alternative to svm based recursive feature elimination with applications in natural language processing and bioinformatics, in: AI 2006: Advances in Artificial Intelligence, Springer, 2006, pp. 170-180.
    • (2006) AI 2006: Advances in Artificial Intelligence, Springer , pp. 170-180
    • Bedo, J.1    Sanderson, C.2    Kowalczyk, A.3
  • 24
    • 84906939980 scopus 로고    scopus 로고
    • Fault detection based on a robust one class support vector machines
    • Yin S., Zhu X. Fault detection based on a robust one class support vector machines. Neurocomputing 2014, 145(5):263-268.
    • (2014) Neurocomputing , vol.145 , Issue.5 , pp. 263-268
    • Yin, S.1    Zhu, X.2
  • 25
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of svm parameters and noise estimation for svm regression
    • Cherkassky V., Ma Y. Practical selection of svm parameters and noise estimation for svm regression. Neural Netw. 2004, 17(1):113-126.
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 26
    • 84893858733 scopus 로고    scopus 로고
    • Quality evaluation based on multivariate statistical methods
    • Yin S., Zhu X., Karimi H.R. Quality evaluation based on multivariate statistical methods. Math. Probl. Eng. 2013, 2013.
    • (2013) Math. Probl. Eng. , vol.2013
    • Yin, S.1    Zhu, X.2    Karimi, H.R.3
  • 27
    • 33947324308 scopus 로고    scopus 로고
    • Improving the performance of svm-rfe to select genes in microarray data
    • Ding Y., Wilkins D. Improving the performance of svm-rfe to select genes in microarray data. BMC Bioinform. 2006, 7(Suppl 2):S12.
    • (2006) BMC Bioinform. , vol.7 , pp. S12
    • Ding, Y.1    Wilkins, D.2
  • 28
    • 77955513371 scopus 로고    scopus 로고
    • Recursive identification algorithms to design fault detection systems
    • Naik A.S., Yin S., Ding S.X., Zhang P. Recursive identification algorithms to design fault detection systems. J. Process Control 2010, 20(8):957-965.
    • (2010) J. Process Control , vol.20 , Issue.8 , pp. 957-965
    • Naik, A.S.1    Yin, S.2    Ding, S.X.3    Zhang, P.4
  • 31
    • 84901008659 scopus 로고    scopus 로고
    • Study on support vector machine-based fault detection in tennessee eastman process
    • Hindawi Publishing Corporation
    • S. Yin, X. Gao, H.R. Karimi, X. Zhu, Study on support vector machine-based fault detection in tennessee eastman process, in: Abstract and Applied Analysis, vol. 2014, Hindawi Publishing Corporation, 2014.
    • (2014) Abstract and Applied Analysis , vol.2014
    • Yin, S.1    Gao, X.2    Karimi, H.R.3    Zhu, X.4
  • 32
    • 0033647286 scopus 로고    scopus 로고
    • Application of genetic algorithm-pls for feature selection in spectral data sets
    • Leardi R. Application of genetic algorithm-pls for feature selection in spectral data sets. J. Chemom. 2000, 14(5-6):643-655.
    • (2000) J. Chemom. , vol.14 , Issue.5-6 , pp. 643-655
    • Leardi, R.1
  • 33
    • 84886563124 scopus 로고    scopus 로고
    • Particle swarm optimization
    • Springer
    • J. Kennedy, Particle swarm optimization, in: Encyclopedia of Machine Learning, Springer, 2010, pp. 760-766.
    • (2010) Encyclopedia of Machine Learning , pp. 760-766
    • Kennedy, J.1
  • 34
    • 84899481774 scopus 로고    scopus 로고
    • A review on basic data-driven approaches for industrial process monitoring
    • Yin S., Ding S., Xie X., Luo H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 2014, 61(11):6418-6428.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.11 , pp. 6418-6428
    • Yin, S.1    Ding, S.2    Xie, X.3    Luo, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.