메뉴 건너뛰기




Volumn 153, Issue , 2015, Pages 20-40

Enhancing performance of the backpropagation algorithm via sparse response regularization

Author keywords

Backpropagation; Feed forward artificial neural network; Human nervous system; Regularization

Indexed keywords

ENERGY CONSERVATION; FEEDFORWARD NEURAL NETWORKS;

EID: 84922243719     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.11.055     Document Type: Article
Times cited : (15)

References (56)
  • 2
    • 0030145155 scopus 로고    scopus 로고
    • Machine learning by imitating human learning
    • Chang K.C., Hong T.P., Tseng S.S. Machine learning by imitating human learning. Mind. Mach. 1996, 6:203-228.
    • (1996) Mind. Mach. , vol.6 , pp. 203-228
    • Chang, K.C.1    Hong, T.P.2    Tseng, S.S.3
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2:1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 44349176195 scopus 로고    scopus 로고
    • Blur identification by multilayer neural network based on multi-valued neurons
    • Aizenberg I., Paliy D., Zurada J., Astola J. Blur identification by multilayer neural network based on multi-valued neurons. IEEE Trans. Neural Netw. 2008, 19:883-898.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , pp. 883-898
    • Aizenberg, I.1    Paliy, D.2    Zurada, J.3    Astola, J.4
  • 5
    • 0037380774 scopus 로고    scopus 로고
    • Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination
    • Marchant J.A., Onyango C.M. Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination. Comput. Electron. Agr. 2003, 39:3-22.
    • (2003) Comput. Electron. Agr. , vol.39 , pp. 3-22
    • Marchant, J.A.1    Onyango, C.M.2
  • 6
    • 0034186757 scopus 로고    scopus 로고
    • Real power transfer capability calculations using multi-layer feed-forward neural networks
    • Luo X., Patton A.D., Singh C. Real power transfer capability calculations using multi-layer feed-forward neural networks. IEEE Trans. Power Syst. 2000, 15:903-908.
    • (2000) IEEE Trans. Power Syst. , vol.15 , pp. 903-908
    • Luo, X.1    Patton, A.D.2    Singh, C.3
  • 10
    • 77957900644 scopus 로고    scopus 로고
    • Performance evaluation of feed-forward neural network with soft computing techniques for hand written English alphabets
    • Shrivastava S., Singh M.P. Performance evaluation of feed-forward neural network with soft computing techniques for hand written English alphabets. Appl. Soft Comput. 2011, 11:1156-1182.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1156-1182
    • Shrivastava, S.1    Singh, M.P.2
  • 13
    • 0031891445 scopus 로고    scopus 로고
    • A sequential learning approach for single hidden layer neural networks
    • Zhang J., Morris A. A sequential learning approach for single hidden layer neural networks. Neural Netw. 1997, 11:65-80.
    • (1997) Neural Netw. , vol.11 , pp. 65-80
    • Zhang, J.1    Morris, A.2
  • 14
    • 0029754431 scopus 로고    scopus 로고
    • The dependence identification neural network construction algorithm
    • Moody J., Anstsaking P.J. The dependence identification neural network construction algorithm. IEEE Trans. Neural Netw. 1996, 7:13-15.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , pp. 13-15
    • Moody, J.1    Anstsaking, P.J.2
  • 15
    • 0029185114 scopus 로고
    • Use of a quasi-Newton method in a feedforward neural network construction algorithm
    • Setiono R., Hui L.C.K. Use of a quasi-Newton method in a feedforward neural network construction algorithm. IEEE Trans. Neural Netw. 1995, 6:237-277.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 237-277
    • Setiono, R.1    Hui, L.C.K.2
  • 16
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural-network learning algorithms for pattern classification
    • Parekh R., Yang J.H., Honavar V. Constructive neural-network learning algorithms for pattern classification. IEEE Trans. Neural Netw. 2000, 11:436-451.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 436-451
    • Parekh, R.1    Yang, J.H.2    Honavar, V.3
  • 18
    • 0027591476 scopus 로고
    • Generative learning structures for generalized connectionist networks
    • Honavor V., Uhr V.L. Generative learning structures for generalized connectionist networks. Inf. Sci. 1993, 70:75-108.
    • (1993) Inf. Sci. , vol.70 , pp. 75-108
    • Honavor, V.1    Uhr, V.L.2
  • 19
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Kwok T.Y., Yeung D.Y. Objective functions for training new hidden units in constructive neural networks. IEEE Trans. Neural Netw. 1997, 8:1131-1148.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 1131-1148
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 21
    • 0031193357 scopus 로고    scopus 로고
    • Investigation of the Casor family of learning algorithms
    • Prechelt L. Investigation of the Casor family of learning algorithms. Neural Netw. 1997, 10:885-896.
    • (1997) Neural Netw. , vol.10 , pp. 885-896
    • Prechelt, L.1
  • 22
    • 84887106795 scopus 로고    scopus 로고
    • Proceedings of the International Conference on Artificial Neural Networks, Bochum, Germany
    • T.Y. Kwok, D.Y. Yeung, Bayesian regularization in constructive neural networks, in: Proceedings of the International Conference on Artificial Neural Networks, Bochum, Germany, 1996, pp. 557-562.
    • (1996) Bayesian regularization in constructive neural networks , pp. 557-562
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 24
    • 0001234705 scopus 로고
    • Second-order derivatives for network pruning. optimal brain surgeon
    • Morgan Kaufmann, San Mateo, CA, S.J. Hanson, J.D. Cowan, C.L. Giles (Eds.)
    • Hassibi B., Stork D.G. Second-order derivatives for network pruning. optimal brain surgeon. Advances in Neural Information Processing Systems 1993, 164-171. Morgan Kaufmann, San Mateo, CA. S.J. Hanson, J.D. Cowan, C.L. Giles (Eds.).
    • (1993) Advances in Neural Information Processing Systems , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 25
    • 84922227477 scopus 로고
    • Pruning algorithms-a review
    • Reed R. Pruning algorithms-a review. IEEE Trans. Neural Netw. 1991, 2:47-55.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 47-55
    • Reed, R.1
  • 26
    • 0001219859 scopus 로고
    • Regularization theory and neural network architecture
    • Girosi F., Jones M., Poggio T. Regularization theory and neural network architecture. Neural Comput. 1995, 7:219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 27
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams P. Bayesian regularization and pruning using a Laplace prior. Neural Comput. 1995, 7:117-143.
    • (1995) Neural Comput. , vol.7 , pp. 117-143
    • Williams, P.1
  • 29
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • Nowlan S.J., Hinton G.E. Simplifying neural networks by soft weight-sharing. Neural Comput. 1992, 4:473-493.
    • (1992) Neural Comput. , vol.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 30
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • Ishikawa M. Structural learning with forgetting. Neural Netw. 1996, 9:509-521.
    • (1996) Neural Netw. , vol.9 , pp. 509-521
    • Ishikawa, M.1
  • 31
    • 0000473247 scopus 로고
    • A backpropagation algorithm with optimal use of hidden units
    • Morgan Kaufmann, San Mateo, CA
    • Chauvin Y. A backpropagation algorithm with optimal use of hidden units. Advances in Neural Information Processing Systems 1989, vol. 1:519-526. Morgan Kaufmann, San Mateo, CA.
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 519-526
    • Chauvin, Y.1
  • 32
    • 34548152342 scopus 로고    scopus 로고
    • Improved generalization of neural classifiers with enforced internal representation
    • Mrázová I., Wang D.H. Improved generalization of neural classifiers with enforced internal representation. Neurocomputing 2007, 70:2940-2952.
    • (2007) Neurocomputing , vol.70 , pp. 2940-2952
    • Mrázová, I.1    Wang, D.H.2
  • 33
    • 53749105298 scopus 로고    scopus 로고
    • Enhancing the generalization ability of neural networks through controlling the hidden layers
    • Hirasawa K. Enhancing the generalization ability of neural networks through controlling the hidden layers. Appl. Soft Comput. 2009, 9:401-414.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 401-414
    • Hirasawa, K.1
  • 34
    • 1842454769 scopus 로고    scopus 로고
    • Anatomical funneling, sparse connectivity and redundancy reduction in the neural networks of the basal ganglia
    • G. Morris, A. Nevet, H. Bergman, Anatomical funneling, sparse connectivity and redundancy reduction in the neural networks of the basal ganglia, J. Physiol.-Paris (2003) 581-589.
    • (2003) J. Physiol.-Paris , pp. 581-589
    • Morris, G.1    Nevet, A.2    Bergman, H.3
  • 35
    • 0015470611 scopus 로고
    • Single units and sensation. a neuron doctrine for perceptual psychology?
    • Barlow H.B. Single units and sensation. a neuron doctrine for perceptual psychology?. Perception 1972, 1:371-394.
    • (1972) Perception , vol.1 , pp. 371-394
    • Barlow, H.B.1
  • 38
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee H., Grosse R., Ranganath R., Ng A.Y. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 2011, 54:95-103.
    • (2011) Commun. ACM , vol.54 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 42
    • 84877619637 scopus 로고    scopus 로고
    • Sparse activity and sparse connectivity in supervised learning
    • Thom M., Palm G. Sparse activity and sparse connectivity in supervised learning. J. Mach. Learn. Res. 2013, 14:1091-1143.
    • (2013) J. Mach. Learn. Res. , vol.14 , pp. 1091-1143
    • Thom, M.1    Palm, G.2
  • 44
    • 33644884686 scopus 로고    scopus 로고
    • A node pruning algorithm based on a Fourier amplitude sensitivity test method
    • Lauret P., Fock E., Mara T.A. A node pruning algorithm based on a Fourier amplitude sensitivity test method. IEEE Trans. Neural Netw. 2006, 17:273-293.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 273-293
    • Lauret, P.1    Fock, E.2    Mara, T.A.3
  • 45
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning sparse code for natural images
    • Olshausen B., Field D. Emergence of simple-cell receptive field properties by learning sparse code for natural images. Nature 1996, 607-609.
    • (1996) Nature , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 46
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Candes E., Tao T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 15:4203-4215.
    • (2005) IEEE Trans. Inf. Theory , vol.15 , pp. 4203-4215
    • Candes, E.1    Tao, T.2
  • 48
    • 38149065377 scopus 로고    scopus 로고
    • Proceedings of the Seventh International Conference on Independent Component Analysis and Signal Separation
    • G.H. Mohimani, M. Babaie-Zadeh, C. Jutten, Fast sparse representation based on smoothed L0 norm, in: Proceedings of the Seventh International Conference on Independent Component Analysis and Signal Separation, 2007, pp. 389-396.
    • (2007) Fast sparse representation based on smoothed L0 norm , pp. 389-396
    • Mohimani, G.H.1    Babaie-Zadeh, M.2    Jutten, C.3
  • 50
    • 0041438377 scopus 로고    scopus 로고
    • 3d shape from anisotropic diffusion, in: IEEE Conference on Computer Vision and Pattern Recognition
    • P. Favaro, S. Osher, S. Soatto, L. Vese, 3d shape from anisotropic diffusion, in: IEEE Conference on Computer Vision and Pattern Recognition, 2003, pp. 179-186.
    • (2003) , pp. 179-186
    • Favaro, P.1    Osher, S.2    Soatto, S.3    Vese, L.4
  • 52
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA [Online]
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA [Online], 1998. http://www.ics.uci.edu/mlern/Machine-Learning.html.
    • (1998) UCI repository of machine learning databases
    • Blake, C.L.1    Merz, C.J.2
  • 53
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 54
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.