메뉴 건너뛰기




Volumn 7, Issue 1, 1996, Pages 3-15

The dependence identification neural network construction algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BACKPROPAGATION; BOOLEAN FUNCTIONS; LEARNING SYSTEMS; LINEAR ALGEBRA; MATHEMATICAL TRANSFORMATIONS; OPTIMIZATION; PROBLEM SOLVING; SPECIFICATIONS;

EID: 0029754431     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.478388     Document Type: Article
Times cited : (49)

References (23)
  • 1
    • 0001632845 scopus 로고
    • On the capabilities of multilayer perceptrons
    • E. B. Baum, "On the capabilities of multilayer perceptrons," J. Complexity, vol. 4, pp. 193-215, 1988.
    • (1988) J. Complexity , vol.4 , pp. 193-215
    • Baum, E.B.1
  • 3
    • 0024861871 scopus 로고
    • Continuous value neural networks with two hidden layers are sufficient
    • G. Cybenko, "Continuous value neural networks with two hidden layers are sufficient," Math. Contr. Signals Syst., vol. 2, pp. 303-314, 1989.
    • (1989) Math. Contr. Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • M. Frean, "The upstart algorithm: A method for constructing and training feedforward neural networks," Neural Computa., vol. 2, pp. 198-209, 1990.
    • (1990) Neural Computa. , vol.2 , pp. 198-209
    • Frean, M.1
  • 7
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • R. Hecht-Nielsen, "Counterpropagation networks," Appl. Optics, vol. 26, no. 23, pp. 4979-4984, 1987.
    • (1987) Appl. Optics , vol.26 , Issue.23 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. M. Hornik, M. Stinchocombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.M.1    Stinchocombe, M.2    White, H.3
  • 11
    • 0025503458 scopus 로고
    • Constructive approximations for neural networks by sigmoidal functions
    • L. K. Jones, "Constructive approximations for neural networks by sigmoidal functions," Proc. IEEE, vol. 78, no. 10, pp. 1586-1589, 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1586-1589
    • Jones, L.K.1
  • 13
    • 0002290223 scopus 로고
    • Efficient parallel learning algorithm for neural networks
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • A. H. Kramer and A. Sangiovanni-Vincentelli, "Efficient parallel learning algorithm for neural networks," in Advances in Neural Information Processing Systems I, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1988, pp. 40-48.
    • (1988) Advances in Neural Information Processing Systems I , pp. 40-48
    • Kramer, A.H.1    Sangiovanni-Vincentelli, A.2
  • 14
    • 84956226983 scopus 로고
    • A convergence theorem for sequential learning in two-layer perceptrons
    • M. Marchand, M. Golea, and P. Ruján, "A convergence theorem for sequential learning in two-layer perceptrons," Europhysics Lett., vol. 11, pp. 487-492, 1990.
    • (1990) Europhysics Lett. , vol.11 , pp. 487-492
    • Marchand, M.1    Golea, M.2    Ruján, P.3
  • 15
    • 36149031331 scopus 로고
    • Learning in feedforward neural networks: The tiling algorithm
    • M. Mézard and J.-P. Nadal, "Learning in feedforward neural networks: The tiling algorithm," J. Physics, vol. A, no. 22, pp. 2191-2204, 1989.
    • (1989) J. Physics , vol.A , Issue.22 , pp. 2191-2204
    • Mézard, M.1    Nadal, J.-P.2
  • 20
    • 85067180927 scopus 로고
    • Neural network training via quadratic optimization
    • San Diego, CA, May 10-13, 1992, and Tech. Rep. 90-05-01, Dep. Electrical Comput. Eng., Univ. Notre Dame, revised Apr.
    • M. A. Sartori and P. J. Antsaklis, "Neural network training via quadratic optimization," in Proc. ISCAS, San Diego, CA, May 10-13, 1992, and Tech. Rep. 90-05-01, Dep. Electrical Comput. Eng., Univ. Notre Dame, revised Apr. 1991.
    • (1991) Proc. ISCAS
    • Sartori, M.A.1    Antsaklis, P.J.2
  • 21
    • 0026190194 scopus 로고
    • A simple method to derive bounds on the size and to train multilayer neural networks
    • July
    • _, "A simple method to derive bounds on the size and to train multilayer neural networks," IEEE Trans. Neural Networks, vol. 2, no. 4, pp. 467-471, July 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.4 , pp. 467-471
  • 22
    • 0041770497 scopus 로고
    • Emergence of grandmother memory in feed forward networks: Learning with noise and forgetfulness
    • D. Waltz and J. A. Feldman, Eds. Norwood, MA: Ablex
    • R. Scalettar and A. Zee, "Emergence of grandmother memory in feed forward networks: Learning with noise and forgetfulness," in Connectionist Models and their Implications: Readings from Cognitive Science, D. Waltz and J. A. Feldman, Eds. Norwood, MA: Ablex, 1988, pp. 309-332.
    • (1988) Connectionist Models and Their Implications: Readings from Cognitive Science , pp. 309-332
    • Scalettar, R.1    Zee, A.2
  • 23
    • 0002855385 scopus 로고
    • Scaling relations in backpropagation learning
    • G. Tesauro and B. Janssens, "Scaling relations in backpropagation learning," Complex Syst., vol. 2, pp. 39-44, 1988.
    • (1988) Complex Syst. , vol.2 , pp. 39-44
    • Tesauro, G.1    Janssens, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.