메뉴 건너뛰기




Volumn 66, Issue 2, 2013, Pages 759-771

Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine

Author keywords

Artificial neural networks; Ensemble empirical mode decomposition; Ensemble learning; Extreme learning machine; Landslide displacement prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA PROCESSING; DEFORMATION MECHANISM; ENSEMBLE FORECASTING; HAZARD ASSESSMENT; LANDSLIDE; LEARNING; MONITORING SYSTEM; PREDICTION; TIME SERIES ANALYSIS;

EID: 84874221132     PISSN: 0921030X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11069-012-0517-6     Document Type: Article
Times cited : (110)

References (30)
  • 1
    • 78049526620 scopus 로고    scopus 로고
    • Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry
    • Chen FL, Ou TY (2011) Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry. Expert Systems with Applications 38: 1336-1345.
    • (2011) Expert Syst Appl , vol.38 , pp. 1336-1345
    • Chen, F.L.1    Ou, T.Y.2
  • 3
    • 0026953305 scopus 로고
    • Improving generalization performance using double backpropagation
    • Drucker H, Cun YL (1992) Improving generalization performance using double backpropagation. IEEE Trans Neural Netw 3(6): 991-997.
    • (1992) IEEE Trans Neural Netw , vol.3 , Issue.6 , pp. 991-997
    • Drucker, H.1    Cun, Y.L.2
  • 4
    • 84856423242 scopus 로고    scopus 로고
    • Reversible watermarking via extreme learning machine prediction
    • Feng GR, Qian ZX, Dai NJ (2012) Reversible watermarking via extreme learning machine prediction. Neurocomputing 82: 62-68.
    • (2012) Neurocomputing , vol.82 , pp. 62-68
    • Feng, G.R.1    Qian, Z.X.2    Dai, N.J.3
  • 5
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo ZH, Zhao WG, Lu HY, Wang JZ (2012) Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 37: 241-249.
    • (2012) Renew Energy , vol.37 , pp. 241-249
    • Guo, Z.H.1    Zhao, W.G.2    Lu, H.Y.3    Wang, J.Z.4
  • 7
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2): 251-257.
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 8
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang GB (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14(2): 274-281.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.B.1
  • 9
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang GB, Babri HA (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9(1): 224-229.
    • (1998) IEEE Trans Neural Netw , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 10
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK (2006a) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4): 879-892.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 11
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu QY, Siew CK (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1-3): 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 14
    • 77953622542 scopus 로고    scopus 로고
    • A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides
    • Kaunda RB (2010) A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slow-moving landslides. Eng Geol 114: 1-9.
    • (2010) Eng Geol , vol.114 , pp. 1-9
    • Kaunda, R.B.1
  • 15
    • 70349847368 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN)
    • Kawabata D, Bandibas J (2009) Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN). Geomorphology 113: 97-109.
    • (2009) Geomorphology , vol.113 , pp. 97-109
    • Kawabata, D.1    Bandibas, J.2
  • 16
    • 38149109867 scopus 로고    scopus 로고
    • Artificial neural networks and cluster analysis in landslide susceptibility zonation
    • Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94: 379-400.
    • (2008) Geomorphology , vol.94 , pp. 379-400
    • Melchiorre, C.1    Matteucci, M.2    Azzoni, A.3    Zanchi, A.4
  • 17
    • 77951977224 scopus 로고    scopus 로고
    • The socioeconomic and environmental effects of the 2003 landslides in the Rumphi and Ntcheu Districts (Malawi)
    • Msilimba GG (2010) The socioeconomic and environmental effects of the 2003 landslides in the Rumphi and Ntcheu Districts (Malawi). Nat Hazards 53: 347-360.
    • (2010) Nat Hazards , vol.53 , pp. 347-360
    • Msilimba, G.G.1
  • 18
    • 40649084527 scopus 로고    scopus 로고
    • An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps
    • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97: 171-191.
    • (2008) Eng Geol , vol.97 , pp. 171-191
    • Nefeslioglu, H.A.1    Gokceoglu, C.2    Sonmez, H.3
  • 19
    • 70350074037 scopus 로고    scopus 로고
    • Landslide risk analysis using artificial neural network model focussing on different training sites
    • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focussing on different training sites. Int J Phys Sci 4(1): 1-15.
    • (2009) Int J Phys Sci , vol.4 , Issue.1 , pp. 1-15
    • Pradhan, B.1    Lee, S.2
  • 20
    • 77952010906 scopus 로고    scopus 로고
    • A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
    • Pradhan B, Lee S, Buchroithner MF (2010) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban Syst 34: 216-235.
    • (2010) Comput Environ Urban Syst , vol.34 , pp. 216-235
    • Pradhan, B.1    Lee, S.2    Buchroithner, M.F.3
  • 21
    • 0007805727 scopus 로고    scopus 로고
    • The predictable time scale of landslides
    • Qin SQ, Jiao JJ, Wang SJ (2001) The predictable time scale of landslides. Bull Eng Geol Environ 59(4): 307-312.
    • (2001) Bull Eng Geol Environ , vol.59 , Issue.4 , pp. 307-312
    • Qin, S.Q.1    Jiao, J.J.2    Wang, S.J.3
  • 22
    • 0036143125 scopus 로고    scopus 로고
    • A nonlinear dynamical model of landslide evolution
    • Qin SQ, Jiao JJ, Wang SJ (2002) A nonlinear dynamical model of landslide evolution. Geomorphology 43: 77-85.
    • (2002) Geomorphology , vol.43 , pp. 77-85
    • Qin, S.Q.1    Jiao, J.J.2    Wang, S.J.3
  • 23
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Sun ZL, Choi TM, Au KF, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Syst 46: 411-419.
    • (2008) Decis Support Syst , vol.46 , pp. 411-419
    • Sun, Z.L.1    Choi, T.M.2    Au, K.F.3    Yu, Y.4
  • 24
    • 77951976387 scopus 로고    scopus 로고
    • Susceptibility analysis of shallow landslides source areas using physically based models
    • Sorbino G, Sica C, Cascini L (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53: 313-332.
    • (2010) Nat Hazards , vol.53 , pp. 313-332
    • Sorbino, G.1    Sica, C.2    Cascini, L.3
  • 25
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: four layers versus three
    • Tamura S, Tateishi M (1997) Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans Neural Netw 8(2): 251-255.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 26
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu ZH, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1): 1-41.
    • (2009) Adv Adapt Data Anal , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 27
    • 79957662878 scopus 로고    scopus 로고
    • Study of displacement prediction model of landslide based on time series analysis
    • Xu F, Wang Y, Du J, Ye J (2011) Study of displacement prediction model of landslide based on time series analysis. Chin J Rock Mechan Eng 30(4): 746-751.
    • (2011) Chin J Rock Mechan Eng , vol.30 , Issue.4 , pp. 746-751
    • Xu, F.1    Wang, Y.2    Du, J.3    Ye, J.4
  • 28
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
    • Yu L, Wang SY, Lai KK (2008) Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ 30: 2623-2635.
    • (2008) Energy Econ , vol.30 , pp. 2623-2635
    • Yu, L.1    Wang, S.Y.2    Lai, K.K.3
  • 30
    • 80051582164 scopus 로고    scopus 로고
    • Face recognition based on extreme learning machine
    • Zong WW, Huang GB (2011) Face recognition based on extreme learning machine. Neurocomputing 74: 2541-2551.
    • (2011) Neurocomputing , vol.74 , pp. 2541-2551
    • Zong, W.W.1    Huang, G.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.