메뉴 건너뛰기




Volumn 149, Issue Part A, 2015, Pages 160-170

Multi-dimensional extreme learning machine

Author keywords

Extreme learning machine; Loss function; Mixed integer programming; Multi dimensional regression

Indexed keywords

ITERATIVE METHODS; KNOWLEDGE ACQUISITION; MACHINE LEARNING;

EID: 84922032837     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.073     Document Type: Article
Times cited : (17)

References (30)
  • 1
    • 44649171589 scopus 로고    scopus 로고
    • EM-based semi-blind channel estimation method for MIMO-OFDM communication systems
    • Obradovic D., Na C., Lupas Scheiterer R., Szabo A. EM-based semi-blind channel estimation method for MIMO-OFDM communication systems. Neurocomputing 2008, 71(10-12):2388-2398.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2388-2398
    • Obradovic, D.1    Na, C.2    Lupas Scheiterer, R.3    Szabo, A.4
  • 2
    • 0024685547 scopus 로고
    • Identification of MIMO non-linear systems using a forward-regression orthogonal estimator
    • Billings S.A., Chen S., Korenberg M.J. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. Int. J. Control 1989, 49(6):2157-2189.
    • (1989) Int. J. Control , vol.49 , Issue.6 , pp. 2157-2189
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 3
    • 78649452332 scopus 로고    scopus 로고
    • Adaptive tracking control for input delayed MIMO nonlinear systems
    • Zhu Q., Zhang T., Fei S. Adaptive tracking control for input delayed MIMO nonlinear systems. Neurocomputing 2010, 74(1-3):472-480.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 472-480
    • Zhu, Q.1    Zhang, T.2    Fei, S.3
  • 4
    • 77954175666 scopus 로고    scopus 로고
    • Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model
    • Xiang L.L., Xie L.B., Liao Y.W., Ding R.F. Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model. Math. Comput. Model 2010, 52:918-924.
    • (2010) Math. Comput. Model , vol.52 , pp. 918-924
    • Xiang, L.L.1    Xie, L.B.2    Liao, Y.W.3    Ding, R.F.4
  • 5
    • 67349090936 scopus 로고    scopus 로고
    • Multi-innovation stochastic gradient algorithms for multi-input multi-output systems
    • Han L.L., Ding F. Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digit. Signal Process. 2009, 19:545-554.
    • (2009) Digit. Signal Process. , vol.19 , pp. 545-554
    • Han, L.L.1    Ding, F.2
  • 6
    • 84900327746 scopus 로고    scopus 로고
    • Simultaneously leveraging output and task structures for multiple-output regression
    • in: Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, USA
    • P. Rai, A. Kumar, H. Daumé III, Simultaneously leveraging output and task structures for multiple-output regression, in: Advances in Neural Information Processing Systems (NIPS), vol. 25, Lake Tahoe, USA, 2012, pp. 3194-3202.
    • (2012) , vol.25 , pp. 3194-3202
    • Rai, P.1    Kumar, A.2    Daumé, H.3
  • 7
    • 80052033224 scopus 로고    scopus 로고
    • Integration of support vector regression and annealing dynamical learning algorithm for MIMO system identification
    • Ko C.-N. Integration of support vector regression and annealing dynamical learning algorithm for MIMO system identification. Expert Syst. Appl. 2011, 38:15224-15233.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 15224-15233
    • Ko, C.-N.1
  • 8
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • in: Proceedings of International Joint Conference on Neural Networks (IJCNN2004), Budapest, Hungary, 25-29 July
    • G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of International Joint Conference on Neural Networks (IJCNN2004), vol. 2, Budapest, Hungary, 25-29 July, 2004, pp. 985-990.
    • (2004) , vol.2 , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 9
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K., et al. Extreme learning machine. theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 11
    • 84893659522 scopus 로고    scopus 로고
    • A multi-output two-stage locally regularized model construction method using the extreme learning machine
    • Du D., Li K., Li, X. A multi-output two-stage locally regularized model construction method using the extreme learning machine. Neurocomputing 2014, 128:104-112.
    • (2014) Neurocomputing , vol.128 , pp. 104-112
    • Du, D.1    Li, K.2    Li, X.3
  • 12
    • 84893691811 scopus 로고    scopus 로고
    • Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification
    • Wang N., Han M., Dong N., Er M.J. Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification. Neurocomputing 2014, 128:59-72.
    • (2014) Neurocomputing , vol.128 , pp. 59-72
    • Wang, N.1    Han, M.2    Dong, N.3    Er, M.J.4
  • 13
    • 84890511528 scopus 로고    scopus 로고
    • Constructive model selection for multi-output extreme learning machine
    • in: Proceedings of 32nd Chinese Control Conference, Xi[U+05F3]an, China
    • N. Wang, N. Dong, G. Liu, M. Han, Constructive model selection for multi-output extreme learning machine, in: Proceedings of 32nd Chinese Control Conference, Xi[U+05F3]an, China, pp. 3242-3247.
    • Wang, N.1    Dong, N.2    Liu, G.3    Han, M.4
  • 14
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G.-B., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 15
    • 67650463106 scopus 로고    scopus 로고
    • Regularized extreme learning machine
    • in: Proceedings of IEEE Symposium on Computational Intelligence and Data Mining (CIDM2009), Nashville TN
    • W.Y. Deng, Q.H. Zheng, L. Chen, Regularized extreme learning machine, in: Proceedings of IEEE Symposium on Computational Intelligence and Data Mining (CIDM2009), Nashville TN, 2009, pp. 389-395.
    • (2009) , pp. 389-395
    • Deng, W.Y.1    Zheng, Q.H.2    Chen, L.3
  • 16
    • 80051671932 scopus 로고    scopus 로고
    • Trop-ELM. a double-regularized ELM using LARS and Tikhonov regularization
    • Miche Y., van Heeswijk M., Bas P., Simula O., Lendasse A. Trop-ELM. a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 2011, 74(16):2413-2421.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2413-2421
    • Miche, Y.1    van Heeswijk, M.2    Bas, P.3    Simula, O.4    Lendasse, A.5
  • 18
    • 84870234983 scopus 로고    scopus 로고
    • Architecture selection for networks trained with extreme learning machine using localized generalization error model
    • Wang X.Z., Shao Q.Y., Miao Q., Zhai J.H. Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 2013, 102(1):3-9.
    • (2013) Neurocomputing , vol.102 , Issue.1 , pp. 3-9
    • Wang, X.Z.1    Shao, Q.Y.2    Miao, Q.3    Zhai, J.H.4
  • 19
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 22
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker B., Heskes T. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. Res. 2003, 4:83-99.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 23
    • 84898982794 scopus 로고    scopus 로고
    • Sharing clusters among related groups: hierarchical Dirichlet processes
    • in: Advances in Neural Information Processing Systems (NIPS), MIT Press, Cambridge, MA
    • Y.W. Teh, M.I. Jordan, M.J. Beal, D.M. Blei, Sharing clusters among related groups: hierarchical Dirichlet processes, in: Advances in Neural Information Processing Systems (NIPS), MIT Press, Cambridge, MA, 2005, pp. 1385-1392.
    • (2005) , pp. 1385-1392
    • Teh, Y.W.1    Jordan, M.I.2    Beal, M.J.3    Blei, D.M.4
  • 24
    • 84867114266 scopus 로고    scopus 로고
    • Learning task grouping and overlap in multi-task learning
    • in: Proceedings of the 29th International Conference on Machine Learning (ICML)
    • A. Kumar, H. Daumé III, Learning task grouping and overlap in multi-task learning, in: Proceedings of the 29th International Conference on Machine Learning (ICML), 2012.
    • (2012)
    • Kumar, A.1    Daumé, H.2
  • 25
    • 80053435765 scopus 로고    scopus 로고
    • Learning with whom to share in multi-task feature learning
    • in: Proceedings of the 28th International Conference on Machine Learning (ICML), Bellevue, USA
    • Z. Kang, K. Grauman, F. Sha, Learning with whom to share in multi-task feature learning, in: Proceedings of the 28th International Conference on Machine Learning (ICML), Bellevue, USA, 2011.
    • (2011)
    • Kang, Z.1    Grauman, K.2    Sha, F.3
  • 26
    • 32644449879 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems
    • Huang V.L., Suganthan P.N., Liang J.J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems. Int. J. Intell. Syst. 2006, 21:209-226.
    • (2006) Int. J. Intell. Syst. , vol.21 , pp. 209-226
    • Huang, V.L.1    Suganthan, P.N.2    Liang, J.J.3
  • 28
    • 84874019666 scopus 로고    scopus 로고
    • Model selection of extreme learning machine based on multi-objective optimization
    • Mao W., Tian M., Cao X., Xu J. Model selection of extreme learning machine based on multi-objective optimization. Neural Comput. Appl. 2013, 22(3):521-529.
    • (2013) Neural Comput. Appl. , vol.22 , Issue.3 , pp. 521-529
    • Mao, W.1    Tian, M.2    Cao, X.3    Xu, J.4
  • 29
    • 84879303199 scopus 로고    scopus 로고
    • A novel machine learning based method of combined dynamic environment prediction
    • Mao W., Yan G., Dong L. A novel machine learning based method of combined dynamic environment prediction. Math. Probl. Eng. 2013, 2013:141849.
    • (2013) Math. Probl. Eng. , vol.2013 , pp. 141849
    • Mao, W.1    Yan, G.2    Dong, L.3
  • 30
    • 84864756022 scopus 로고    scopus 로고
    • Research of load identification based on multiple-input multiple-output SVM model selection
    • Mao W., Tian M., Yan G. Research of load identification based on multiple-input multiple-output SVM model selection. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2012, 226:1395-1409.
    • (2012) Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. , vol.226 , pp. 1395-1409
    • Mao, W.1    Tian, M.2    Yan, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.