메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 104-112

A multi-output two-stage locally regularized model construction method using the extreme learning machine

Author keywords

Extreme learning machine; Multi output linear in the parameters (LITP) model; Regularization; Two stage stepwise selection

Indexed keywords

EXTREME LEARNING MACHINE; FAST IMPLEMENTATION; GENERALIZATION CAPABILITY; MULTI-OUTPUT; NON-LINEAR PARAMETERS; REGULARIZATION; TERMINATION CRITERIA; TWO-STAGE STEPWISE SELECTION;

EID: 84893659522     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.03.056     Document Type: Article
Times cited : (9)

References (28)
  • 1
    • 80052033224 scopus 로고    scopus 로고
    • Integration of support vector regression and annealing dynamical learning algorithm for MIMO system identification
    • Ko C.-N. Integration of support vector regression and annealing dynamical learning algorithm for MIMO system identification. Expert Syst. Appl. 2011, 38:15224-15233.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 15224-15233
    • Ko, C.-N.1
  • 2
    • 0031209590 scopus 로고    scopus 로고
    • Multi-output process identification
    • Dayal B.S., MacGregor J.F. Multi-output process identification. J. Process Control 1997, 7(4):269-282.
    • (1997) J. Process Control , vol.7 , Issue.4 , pp. 269-282
    • Dayal, B.S.1    MacGregor, J.F.2
  • 3
    • 67349090936 scopus 로고    scopus 로고
    • Multi-innovation stochastic gradient algorithms for multi-input multi-output systems
    • Han L.L., Ding F. Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digit. Signal Process. 2009, 19(4):545-554.
    • (2009) Digit. Signal Process. , vol.19 , Issue.4 , pp. 545-554
    • Han, L.L.1    Ding, F.2
  • 4
    • 77954175666 scopus 로고    scopus 로고
    • Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model
    • Xiang L.L., Xie L.B., Liao Y.W., Ding R.F. Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model. Math. Comput. Model. 2010, 52(6):918-924.
    • (2010) Math. Comput. Model. , vol.52 , Issue.6 , pp. 918-924
    • Xiang, L.L.1    Xie, L.B.2    Liao, Y.W.3    Ding, R.F.4
  • 5
    • 84863012837 scopus 로고    scopus 로고
    • Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems
    • Ding F., Liu Y., Bao B. Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng. 2012, 226(1):43-55.
    • (2012) Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng. , vol.226 , Issue.1 , pp. 43-55
    • Ding, F.1    Liu, Y.2    Bao, B.3
  • 6
    • 0033732354 scopus 로고    scopus 로고
    • Selection radial basis function network centers with recursive orthogonal least squares training
    • Barry Gomm J., Yu D. Selection radial basis function network centers with recursive orthogonal least squares training. IEEE Trans. Neural Netw. 2000, 11:306-314.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 306-314
    • Barry Gomm, J.1    Yu, D.2
  • 7
    • 0028465208 scopus 로고
    • Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
    • Elanayar S., Shin Y.C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Netw. 1994, 5(4):594-603.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.4 , pp. 594-603
    • Elanayar, S.1    Shin, Y.C.2
  • 8
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression. statistical consistency, convergence rates, and receptive field size
    • Xu L., Krzyzak A., Yuille A. On radial basis function nets and kernel regression. statistical consistency, convergence rates, and receptive field size. Neural Netw. 1994, 7(4):609-628.
    • (1994) Neural Netw. , vol.7 , Issue.4 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.3
  • 10
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine. theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 12
    • 0024685547 scopus 로고
    • Identification of MIMO non-linear systems using a forward-regression orthogonal estimator
    • Billings S.A., Chen S., Korenberg M.J. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. Int. J. Control 1989, 49(6):2157-2189.
    • (1989) Int. J. Control , vol.49 , Issue.6 , pp. 2157-2189
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 13
    • 0026992119 scopus 로고
    • Orthogonal least-squares algorithm for training multioutput radial basis function networks
    • Chen S., Grant P.M., Cowan C.F.N. Orthogonal least-squares algorithm for training multioutput radial basis function networks. IEE Proc. Radar Signal Process. 1992, 139(6):378-384.
    • (1992) IEE Proc. Radar Signal Process. , vol.139 , Issue.6 , pp. 378-384
    • Chen, S.1    Grant, P.M.2    Cowan, C.F.N.3
  • 14
    • 26244441991 scopus 로고    scopus 로고
    • A fast nonlinear model identification method
    • Li K., Peng J., Irwin G.W. A fast nonlinear model identification method. IEEE Trans. Autom. Control. 2005, 50(8):1211-1216.
    • (2005) IEEE Trans. Autom. Control. , vol.50 , Issue.8 , pp. 1211-1216
    • Li, K.1    Peng, J.2    Irwin, G.W.3
  • 15
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • Li K., Peng J., Bai E-W. A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 2006, 42(7):1189-1197.
    • (2006) Automatica , vol.42 , Issue.7 , pp. 1189-1197
    • Li, K.1    Peng, J.2    Bai, E.-W.3
  • 16
    • 77952485893 scopus 로고    scopus 로고
    • A fast multi-output RBF neural network construction method
    • Du D., Li K., Fei M. A fast multi-output RBF neural network construction method. Neurocomputing 2010, 73:2196-2202.
    • (2010) Neurocomputing , vol.73 , pp. 2196-2202
    • Du, D.1    Li, K.2    Fei, M.3
  • 17
    • 79955793286 scopus 로고    scopus 로고
    • Learning Sparse models for a dynamic Bayesian network classifier of protein secondary structure
    • Aydin Z., Singh A., Bilmes J., Noble W. Learning Sparse models for a dynamic Bayesian network classifier of protein secondary structure. BMC Bioinforma. 2011, 12(154):1-21.
    • (2011) BMC Bioinforma. , vol.12 , Issue.154 , pp. 1-21
    • Aydin, Z.1    Singh, A.2    Bilmes, J.3    Noble, W.4
  • 18
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
    • Chen S., Hong X., Harris C., Sharkey P. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. B Cybern. 2004, 34(2):898-911.
    • (2004) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.3    Sharkey, P.4
  • 19
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Comput. 1992, 4(3):415-447.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 20
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.T. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.T.1
  • 21
    • 46049114855 scopus 로고    scopus 로고
    • Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives
    • Jayadeva B., Khemchandani R., Chandra S. Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives. Inf. Sci. 2008, 178:3402-3414.
    • (2008) Inf. Sci. , vol.178 , pp. 3402-3414
    • Jayadeva, B.1    Khemchandani, R.2    Chandra, S.3
  • 22
    • 84942484786 scopus 로고
    • Ridge regression. biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression. biased estimation for nonorthogonal problems. Technometrics 1970, 12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 23
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 2006, 69:559-585.
    • (2006) Neurocomputing , vol.69 , pp. 559-585
    • Chen, S.1
  • 24
    • 0036697720 scopus 로고    scopus 로고
    • Multi-output regression using a locally regularised orthogonal least-squares algorithm
    • Chen S. Multi-output regression using a locally regularised orthogonal least-squares algorithm. IEE Proc. Vis. Image Signal Process. 2002, 149(4):185-195.
    • (2002) IEE Proc. Vis. Image Signal Process. , vol.149 , Issue.4 , pp. 185-195
    • Chen, S.1
  • 25
    • 63449091970 scopus 로고    scopus 로고
    • Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems
    • Li K., Peng J., Bai E.-W. Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems. IEEE Trans. Circuits Syst. I Reg. Papers. 2009, 56(3):630-643.
    • (2009) IEEE Trans. Circuits Syst. I Reg. Papers. , vol.56 , Issue.3 , pp. 630-643
    • Li, K.1    Peng, J.2    Bai, E.-W.3
  • 26
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 1991, 2(2):302-309.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 28
    • 0023104537 scopus 로고
    • Model selection and validation methods for non-linear systems
    • Leontaritis I.J., Billings S.A. Model selection and validation methods for non-linear systems. Int. J. Control 1987, 45:311-341.
    • (1987) Int. J. Control , vol.45 , pp. 311-341
    • Leontaritis, I.J.1    Billings, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.