-
1
-
-
80052033224
-
Integration of support vector regression and annealing dynamical learning algorithm for MIMO system identification
-
Ko C.-N. Integration of support vector regression and annealing dynamical learning algorithm for MIMO system identification. Expert Syst. Appl. 2011, 38:15224-15233.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 15224-15233
-
-
Ko, C.-N.1
-
2
-
-
0031209590
-
Multi-output process identification
-
Dayal B.S., MacGregor J.F. Multi-output process identification. J. Process Control 1997, 7(4):269-282.
-
(1997)
J. Process Control
, vol.7
, Issue.4
, pp. 269-282
-
-
Dayal, B.S.1
MacGregor, J.F.2
-
3
-
-
67349090936
-
Multi-innovation stochastic gradient algorithms for multi-input multi-output systems
-
Han L.L., Ding F. Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Digit. Signal Process. 2009, 19(4):545-554.
-
(2009)
Digit. Signal Process.
, vol.19
, Issue.4
, pp. 545-554
-
-
Han, L.L.1
Ding, F.2
-
4
-
-
77954175666
-
Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model
-
Xiang L.L., Xie L.B., Liao Y.W., Ding R.F. Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model. Math. Comput. Model. 2010, 52(6):918-924.
-
(2010)
Math. Comput. Model.
, vol.52
, Issue.6
, pp. 918-924
-
-
Xiang, L.L.1
Xie, L.B.2
Liao, Y.W.3
Ding, R.F.4
-
5
-
-
84863012837
-
Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems
-
Ding F., Liu Y., Bao B. Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng. 2012, 226(1):43-55.
-
(2012)
Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng.
, vol.226
, Issue.1
, pp. 43-55
-
-
Ding, F.1
Liu, Y.2
Bao, B.3
-
6
-
-
0033732354
-
Selection radial basis function network centers with recursive orthogonal least squares training
-
Barry Gomm J., Yu D. Selection radial basis function network centers with recursive orthogonal least squares training. IEEE Trans. Neural Netw. 2000, 11:306-314.
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, pp. 306-314
-
-
Barry Gomm, J.1
Yu, D.2
-
7
-
-
0028465208
-
Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
-
Elanayar S., Shin Y.C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Netw. 1994, 5(4):594-603.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.4
, pp. 594-603
-
-
Elanayar, S.1
Shin, Y.C.2
-
8
-
-
0028341934
-
On radial basis function nets and kernel regression. statistical consistency, convergence rates, and receptive field size
-
Xu L., Krzyzak A., Yuille A. On radial basis function nets and kernel regression. statistical consistency, convergence rates, and receptive field size. Neural Netw. 1994, 7(4):609-628.
-
(1994)
Neural Netw.
, vol.7
, Issue.4
, pp. 609-628
-
-
Xu, L.1
Krzyzak, A.2
Yuille, A.3
-
10
-
-
33745903481
-
Extreme learning machine. theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine. theory and applications. Neurocomputing 2006, 70:489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
11
-
-
84859007933
-
Extreme learning machine for regression and multi-class classification
-
Huang G.-B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multi-class classification. IEEE Trans. Syst. Man Cybern. B Cybern. 2012, 42(2):513-529.
-
(2012)
IEEE Trans. Syst. Man Cybern. B Cybern.
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
12
-
-
0024685547
-
Identification of MIMO non-linear systems using a forward-regression orthogonal estimator
-
Billings S.A., Chen S., Korenberg M.J. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. Int. J. Control 1989, 49(6):2157-2189.
-
(1989)
Int. J. Control
, vol.49
, Issue.6
, pp. 2157-2189
-
-
Billings, S.A.1
Chen, S.2
Korenberg, M.J.3
-
13
-
-
0026992119
-
Orthogonal least-squares algorithm for training multioutput radial basis function networks
-
Chen S., Grant P.M., Cowan C.F.N. Orthogonal least-squares algorithm for training multioutput radial basis function networks. IEE Proc. Radar Signal Process. 1992, 139(6):378-384.
-
(1992)
IEE Proc. Radar Signal Process.
, vol.139
, Issue.6
, pp. 378-384
-
-
Chen, S.1
Grant, P.M.2
Cowan, C.F.N.3
-
14
-
-
26244441991
-
A fast nonlinear model identification method
-
Li K., Peng J., Irwin G.W. A fast nonlinear model identification method. IEEE Trans. Autom. Control. 2005, 50(8):1211-1216.
-
(2005)
IEEE Trans. Autom. Control.
, vol.50
, Issue.8
, pp. 1211-1216
-
-
Li, K.1
Peng, J.2
Irwin, G.W.3
-
15
-
-
33646800222
-
A two-stage algorithm for identification of nonlinear dynamic systems
-
Li K., Peng J., Bai E-W. A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 2006, 42(7):1189-1197.
-
(2006)
Automatica
, vol.42
, Issue.7
, pp. 1189-1197
-
-
Li, K.1
Peng, J.2
Bai, E.-W.3
-
16
-
-
77952485893
-
A fast multi-output RBF neural network construction method
-
Du D., Li K., Fei M. A fast multi-output RBF neural network construction method. Neurocomputing 2010, 73:2196-2202.
-
(2010)
Neurocomputing
, vol.73
, pp. 2196-2202
-
-
Du, D.1
Li, K.2
Fei, M.3
-
17
-
-
79955793286
-
Learning Sparse models for a dynamic Bayesian network classifier of protein secondary structure
-
Aydin Z., Singh A., Bilmes J., Noble W. Learning Sparse models for a dynamic Bayesian network classifier of protein secondary structure. BMC Bioinforma. 2011, 12(154):1-21.
-
(2011)
BMC Bioinforma.
, vol.12
, Issue.154
, pp. 1-21
-
-
Aydin, Z.1
Singh, A.2
Bilmes, J.3
Noble, W.4
-
18
-
-
1842430977
-
Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
-
Chen S., Hong X., Harris C., Sharkey P. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. B Cybern. 2004, 34(2):898-911.
-
(2004)
IEEE Trans. Syst. Man Cybern. B Cybern.
, vol.34
, Issue.2
, pp. 898-911
-
-
Chen, S.1
Hong, X.2
Harris, C.3
Sharkey, P.4
-
19
-
-
0001025418
-
Bayesian interpolation
-
MacKay D.J.C. Bayesian interpolation. Neural Comput. 1992, 4(3):415-447.
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
20
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping M.T. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.T.1
-
21
-
-
46049114855
-
Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives
-
Jayadeva B., Khemchandani R., Chandra S. Regularized least squares support vector regression for the simultaneous learning of a function and its derivatives. Inf. Sci. 2008, 178:3402-3414.
-
(2008)
Inf. Sci.
, vol.178
, pp. 3402-3414
-
-
Jayadeva, B.1
Khemchandani, R.2
Chandra, S.3
-
22
-
-
84942484786
-
Ridge regression. biased estimation for nonorthogonal problems
-
Hoerl A.E., Kennard R.W. Ridge regression. biased estimation for nonorthogonal problems. Technometrics 1970, 12(1):55-67.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
23
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 2006, 69:559-585.
-
(2006)
Neurocomputing
, vol.69
, pp. 559-585
-
-
Chen, S.1
-
24
-
-
0036697720
-
Multi-output regression using a locally regularised orthogonal least-squares algorithm
-
Chen S. Multi-output regression using a locally regularised orthogonal least-squares algorithm. IEE Proc. Vis. Image Signal Process. 2002, 149(4):185-195.
-
(2002)
IEE Proc. Vis. Image Signal Process.
, vol.149
, Issue.4
, pp. 185-195
-
-
Chen, S.1
-
25
-
-
63449091970
-
Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems
-
Li K., Peng J., Bai E.-W. Two-stage mixed discrete-continuous identification of radial basis function (RBF) neural models for nonlinear systems. IEEE Trans. Circuits Syst. I Reg. Papers. 2009, 56(3):630-643.
-
(2009)
IEEE Trans. Circuits Syst. I Reg. Papers.
, vol.56
, Issue.3
, pp. 630-643
-
-
Li, K.1
Peng, J.2
Bai, E.-W.3
-
26
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 1991, 2(2):302-309.
-
(1991)
IEEE Trans. Neural Netw.
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
28
-
-
0023104537
-
Model selection and validation methods for non-linear systems
-
Leontaritis I.J., Billings S.A. Model selection and validation methods for non-linear systems. Int. J. Control 1987, 45:311-341.
-
(1987)
Int. J. Control
, vol.45
, pp. 311-341
-
-
Leontaritis, I.J.1
Billings, S.A.2
|