메뉴 건너뛰기




Volumn 5, Issue 1, 2015, Pages

Detection for pathway effect contributing to disease in systems epidemiology with a case-control

Author keywords

[No Author keywords available]

Indexed keywords

ACUTE GRANULOCYTIC LEUKEMIA; ADULT; ARTICLE; BOOTSTRAPPING; CANCER PATIENT; CONTROLLED STUDY; EPIDEMIOLOGY; FEMALE; HUMAN; MAJOR CLINICAL STUDY; MALE; PATHOGENESIS; POPULATION; RISK FACTOR; SIMULATION; SYSTEM EPIDEMIOLOGY; CASE CONTROL STUDY; EVALUATION STUDY; IMMUNOLOGY; LEUKEMIA, MYELOID, ACUTE; METABOLISM; MIDDLE AGED; PATHOPHYSIOLOGY; PHYSIOLOGY; REGULATORY T LYMPHOCYTE; SIGNAL TRANSDUCTION; STATISTICAL MODEL; TH17 CELL;

EID: 84921910280     PISSN: None     EISSN: 20446055     Source Type: Journal    
DOI: 10.1136/bmjopen-2014-006721     Document Type: Article
Times cited : (11)

References (36)
  • 1
    • 84860724020 scopus 로고    scopus 로고
    • Diving through the "-omics": The case for deep phenotyping and systems epidemiology
    • Haring R, Wallaschofski H. Diving through the "-omics" : the case for deep phenotyping and systems epidemiology. OMICS 2012;16:231-4.
    • (2012) OMICS , vol.16 , pp. 231-234
    • Haring, R.1    Wallaschofski, H.2
  • 2
    • 80051496148 scopus 로고    scopus 로고
    • Is "X"-WAS the future for all of epidemiology
    • discussion 467-8
    • Fallin MD, Kao WH. Is "X"-WAS the future for all of epidemiology. Epidemiology 2011;22:457-9; discussion 467-8.
    • (2011) Epidemiology , vol.22 , pp. 457-459
    • Fallin, M.D.1    Kao, W.H.2
  • 4
    • 80052249990 scopus 로고    scopus 로고
    • Metabolic profiling of diabetes: From black-box epidemiology to systems epidemiology
    • Hu FB. Metabolic profiling of diabetes: from black-box epidemiology to systems epidemiology. Clin Chem 2011;57:1224-6.
    • (2011) Clin Chem , vol.57 , pp. 1224-1226
    • Hu, F.B.1
  • 5
    • 84889002223 scopus 로고    scopus 로고
    • Network-based drug discovery by integrating systems biology and computational technologies
    • Leung EL, Cao ZW, Jiang ZH, et al. Network-based drug discovery by integrating systems biology and computational technologies. Brief Bioinform 2013;14:491-505.
    • (2013) Brief Bioinform , vol.14 , pp. 491-505
    • Leung, E.L.1    Cao, Z.W.2    Jiang, Z.H.3
  • 6
    • 84895922856 scopus 로고    scopus 로고
    • Systems biology in drug discovery and development
    • Berg EL. Systems biology in drug discovery and development. Drug Discov Today 2014;19:113-25.
    • (2014) Drug Discov Today , vol.19 , pp. 113-125
    • Berg, E.L.1
  • 7
    • 84900905122 scopus 로고    scopus 로고
    • Translational medicine: Application of omics for drug target discovery and validation
    • William CS, ed. Springer: The Netherlands
    • Zhang X, Wang W, Xiao K, et al. Translational medicine: application of omics for drug target discovery and validation. In: William CS, ed. An omics perspective on cancer research. Springer: The Netherlands, 2010:235-47.
    • (2010) An Omics Perspective on Cancer Research , pp. 235-247
    • Zhang, X.1    Wang, W.2    Xiao, K.3
  • 8
    • 43249114206 scopus 로고    scopus 로고
    • Network-based global inference of human disease genes
    • Wu X, Jiang R, Zhang MQ, et al. Network-based global inference of human disease genes. Mol Syst Biol 2008;4:189.
    • (2008) Mol Syst Biol , vol.4 , pp. 189
    • Wu, X.1    Jiang, R.2    Zhang, M.Q.3
  • 9
    • 84874794126 scopus 로고    scopus 로고
    • An inferential framework for biological network hypothesis tests
    • Yates PD, Mukhopadhyay ND. An inferential framework for biological network hypothesis tests. BMC Bioinformatics 2013;14:94.
    • (2013) BMC Bioinformatics , vol.14 , pp. 94
    • Yates, P.D.1    Mukhopadhyay, N.D.2
  • 10
    • 39449120417 scopus 로고    scopus 로고
    • Correlation network analysis for data integration and biomarker selection
    • Adourian A, Jennings E, Balasubramanian R, et al. Correlation network analysis for data integration and biomarker selection. Mol Biosyst 2008;4:249-59.
    • (2008) Mol Biosyst , vol.4 , pp. 249-259
    • Adourian, A.1    Jennings, E.2    Balasubramanian, R.3
  • 11
    • 36249029788 scopus 로고    scopus 로고
    • Pathway-based approaches for analysis of genomewide association studies
    • Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 2007;81:1278-83.
    • (2007) Am J Hum Genet , vol.81 , pp. 1278-1283
    • Wang, K.1    Li, M.2    Bucan, M.3
  • 12
    • 58349112341 scopus 로고    scopus 로고
    • Prioritizing risk pathways: A novel association approach to searching for disease pathways fusing SNPs and pathways
    • Chen L, Zhang L, Zhao Y, et al. Prioritizing risk pathways: a novel association approach to searching for disease pathways fusing SNPs and pathways. Bioinformatics 2009;25:237-42.
    • (2009) Bioinformatics , vol.25 , pp. 237-242
    • Chen, L.1    Zhang, L.2    Zhao, Y.3
  • 13
    • 79958155496 scopus 로고    scopus 로고
    • Pathway analysis of high-throughput biological data within a Bayesian network framework
    • Isci S, Ozturk C, Jones J, et al. Pathway analysis of high-throughput biological data within a Bayesian network framework. Bioinformatics 2011;27:1667-74.
    • (2011) Bioinformatics , vol.27 , pp. 1667-1674
    • Isci, S.1    Ozturk, C.2    Jones, J.3
  • 14
    • 67651053605 scopus 로고    scopus 로고
    • Pathway analysis by adaptive combination of p values
    • Yu K, Li Q, Bergen AW, et al. Pathway analysis by adaptive combination of p values. Genet Epidemiol 2009;33:700-9.
    • (2009) Genet Epidemiol , vol.33 , pp. 700-709
    • Yu, K.1    Li, Q.2    Bergen, A.W.3
  • 15
    • 84861775220 scopus 로고    scopus 로고
    • Identifying disease related sub-pathways for analysis of genome-wide association studies
    • Li C, Han J, Shang D, et al. Identifying disease related sub-pathways for analysis of genome-wide association studies. Gene 2012;503:101-9.
    • (2012) Gene , vol.503 , pp. 101-109
    • Li, C.1    Han, J.2    Shang, D.3
  • 18
    • 84923818429 scopus 로고
    • Better bootstrap confidence intervals
    • Efron B. Better bootstrap confidence intervals. J Am Stat Assoc 1987;82:171-85.
    • (1987) J Am Stat Assoc , vol.82 , pp. 171-185
    • Efron, B.1
  • 19
    • 0009787448 scopus 로고
    • The variance of the product of K random variables
    • Goodman LA. The variance of the product of K random variables. J Am Stat Assoc 1962;57:54-60.
    • (1962) J Am Stat Assoc , vol.57 , pp. 54-60
    • Goodman, L.A.1
  • 20
    • 0002037905 scopus 로고
    • Asymptotic confidence intervals for indirect effects in structural equation models
    • Sobel ME. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 1982;13:290-312.
    • (1982) Sociol Methodol , vol.13 , pp. 290-312
    • Sobel, M.E.1
  • 21
    • 44049102724 scopus 로고    scopus 로고
    • A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses
    • Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008;9:650-7.
    • (2008) Nat Immunol , vol.9 , pp. 650-657
    • Volpe, E.1    Servant, N.2    Zollinger, R.3
  • 22
    • 47549112840 scopus 로고    scopus 로고
    • IL-21 and TGF-beta are required for differentiation of human T(H)17 cells
    • Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008;454:350-2.
    • (2008) Nature , vol.454 , pp. 350-352
    • Yang, L.1    Anderson, D.E.2    Baecher-Allan, C.3
  • 23
    • 80054991882 scopus 로고    scopus 로고
    • Network-based methods for human disease gene prediction
    • Wang X, Gulbahce N, Yu H. Network-based methods for human disease gene prediction. Brief Funct Genomics 2011;10:280-93.
    • (2011) Brief Funct Genomics , vol.10 , pp. 280-293
    • Wang, X.1    Gulbahce, N.2    Yu, H.3
  • 24
    • 84866682376 scopus 로고    scopus 로고
    • Network-based approaches for extending the Wnt signalling pathway and identifying context-specific sub-networks
    • Saha S, Roman T, Galante A, et al. Network-based approaches for extending the Wnt signalling pathway and identifying context-specific sub-networks. Int J ComputBiol Drug Des 2012;5:185-205.
    • (2012) Int J ComputBiol Drug des , vol.5 , pp. 185-205
    • Saha, S.1    Roman, T.2    Galante, A.3
  • 25
    • 41649119247 scopus 로고    scopus 로고
    • Protein networks in disease
    • Ideker T, Sharan R. Protein networks in disease. Genome Res 2008;18:644-52.
    • (2008) Genome Res , vol.18 , pp. 644-652
    • Ideker, T.1    Sharan, R.2
  • 26
    • 84862682774 scopus 로고    scopus 로고
    • Protein interaction networks in medicine and disease
    • Taylor IW, Wrana JL. Protein interaction networks in medicine and disease. Proteomics 2012;12:1706-16.
    • (2012) Proteomics , vol.12 , pp. 1706-1716
    • Taylor, I.W.1    Wrana, J.L.2
  • 27
    • 30544449081 scopus 로고    scopus 로고
    • A quantitative protein interaction network for the ErbB receptors using protein microarrays
    • Jones RB, Gordus A, Krall JA, et al. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006;439:168-74.
    • (2006) Nature , vol.439 , pp. 168-174
    • Jones, R.B.1    Gordus, A.2    Krall, J.A.3
  • 28
    • 65549084289 scopus 로고    scopus 로고
    • Pathway and network-based analysis of genome-wide association studies in multiple sclerosis
    • Baranzini SE, Galwey NW, Wang J, et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009;18:2078-90.
    • (2009) Hum Mol Genet , vol.18 , pp. 2078-2090
    • Baranzini, S.E.1    Galwey, N.W.2    Wang, J.3
  • 29
    • 84862499505 scopus 로고    scopus 로고
    • Identifying biological network structure, predicting network behavior, and classifying network state with high dimensional model representation (HDMR)
    • Miller MA, Feng XJ, Li G, et al. Identifying biological network structure, predicting network behavior, and classifying network state with high dimensional model representation (HDMR). PLoS ONE 2012;7:e37664.
    • (2012) PLoS ONE , vol.7 , pp. e37664
    • Miller, M.A.1    Feng, X.J.2    Li, G.3
  • 31
    • 76949089751 scopus 로고    scopus 로고
    • Learning biological network using mutual information and conditional independence
    • Kim DC, Wang X, Yang CR, et al. Learning biological network using mutual information and conditional independence. BMC Bioinformatics 2010;11(Suppl):S9.
    • (2010) BMC Bioinformatics , vol.11 , pp. S9
    • Kim, D.C.1    Wang, X.2    Yang, C.R.3
  • 32
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: A network-based approach to human disease
    • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12:56-68.
    • (2011) Nat Rev Genet , vol.12 , pp. 56-68
    • Barabasi, A.L.1    Gulbahce, N.2    Loscalzo, J.3
  • 33
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5:101-13.
    • (2004) Nat Rev Genet , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 34
    • 0142059836 scopus 로고    scopus 로고
    • Protein complexes and functional modules in molecular networks
    • Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 2003;100:12123-8.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 12123-12128
    • Spirin, V.1    Mirny, L.A.2
  • 35
    • 33646577466 scopus 로고    scopus 로고
    • Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
    • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235-8.
    • (2006) Nature , vol.441 , pp. 235-238
    • Bettelli, E.1    Carrier, Y.2    Gao, W.3
  • 36
    • 84884239451 scopus 로고    scopus 로고
    • Aberrant T helper 17 cells and related cytokines in bone marrow microenvironment of patients with acute myeloid leukemia
    • Tian T, Yu S, Wang M, et al. Aberrant T helper 17 cells and related cytokines in bone marrow microenvironment of patients with acute myeloid leukemia. Clin Dev Immunol 2013;2013:915873.
    • (2013) Clin Dev Immunol , vol.2013 , pp. 915873
    • Tian, T.1    Yu, S.2    Wang, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.