메뉴 건너뛰기




Volumn 75, Issue , 2015, Pages 19-29

Unsupervised feature selection via maximum projection and minimum redundancy

Author keywords

Feature selection; Kernel method; Machine learning; Matrix factorization; Minimum redundancy; Unsupervised learning

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; DIMENSIONALITY REDUCTION; FACTORIZATION; FEATURE EXTRACTION; ITERATIVE METHODS; LEARNING SYSTEMS; MATRIX ALGEBRA; REDUNDANCY; UNSUPERVISED LEARNING;

EID: 84920525835     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2014.11.008     Document Type: Article
Times cited : (72)

References (29)
  • 2
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 7
    • 84869507179 scopus 로고    scopus 로고
    • An effective feature selection method via mutual information estimation
    • J.-B. Yang, and C.-J. Ong An effective feature selection method via mutual information estimation IEEE Trans. Syst. Sci. Cybernet. - Part B: Cybernet. 42 6 2012 1550 1559
    • (2012) IEEE Trans. Syst. Sci. Cybernet. - Part B: Cybernet. , vol.42 , Issue.6 , pp. 1550-1559
    • Yang, J.-B.1    Ong, C.-J.2
  • 8
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • J.L. Rodgers, and W.A. Nicewander Thirteen ways to look at the correlation coefficient Am. Statist. 42 1 1988 59 66
    • (1988) Am. Statist. , vol.42 , Issue.1 , pp. 59-66
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 9
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J.G. Dy, and C.E. Brodley Feature selection for unsupervised learning J. Mach. Learn. Res. 5 12 2004 845 889
    • (2004) J. Mach. Learn. Res. , vol.5 , Issue.12 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 14
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Y. Sun, S. Todorovic, and S. Goodison Local-learning-based feature selection for high-dimensional data analysis IEEE Trans. Pattern Anal. Mach. Intell. 32 9 2010 1610 1626
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.9 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 15
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu, and L. Yu Toward integrating feature selection algorithms for classification and clustering IEEE Trans. Knowl. Data Eng. 17 4 2005 491 502
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 19
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
    • (1997) Artif. Intell. , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 21
    • 84876024189 scopus 로고    scopus 로고
    • Efficient greedy feature selection for unsupervised learning
    • A.K. Farahat, A. Ghodsi, and M.S. Kamel Efficient greedy feature selection for unsupervised learning Knowl. Inform. Syst. 35 2013 285 310
    • (2013) Knowl. Inform. Syst. , vol.35 , pp. 285-310
    • Farahat, A.K.1    Ghodsi, A.2    Kamel, M.S.3
  • 22
    • 84893288034 scopus 로고    scopus 로고
    • Efficient online learning for multitask feature selection
    • H. Yang, M.R. Lyu, and I. King Efficient online learning for multitask feature selection ACM Trans. Knowl. Discov. Data 7 2 2013 1 27
    • (2013) ACM Trans. Knowl. Discov. Data , vol.7 , Issue.2 , pp. 1-27
    • Yang, H.1    Lyu, M.R.2    King, I.3
  • 24
    • 84878017358 scopus 로고    scopus 로고
    • Large margin subspace learning for feature selection
    • B. Liu, B. Fang, X. Liu, J. Chen, Z. Huang, and X. He Large margin subspace learning for feature selection Pattern Recog. 46 10 2013 2798 2806
    • (2013) Pattern Recog. , vol.46 , Issue.10 , pp. 2798-2806
    • Liu, B.1    Fang, B.2    Liu, X.3    Chen, J.4    Huang, Z.5    He, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.