-
2
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
5
-
-
80053144252
-
Generalized fisher score for feature selection
-
Q. Gu, Z. Li, J. Han, Generalized fisher score for feature selection, in: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 2011, pp. 1-8.
-
(2011)
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain
, pp. 1-8
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
6
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
8
-
-
84952503562
-
Thirteen ways to look at the correlation coefficient
-
J.L. Rodgers, and W.A. Nicewander Thirteen ways to look at the correlation coefficient Am. Statist. 42 1 1988 59 66
-
(1988)
Am. Statist.
, vol.42
, Issue.1
, pp. 59-66
-
-
Rodgers, J.L.1
Nicewander, W.A.2
-
9
-
-
26444454606
-
Feature selection for unsupervised learning
-
J.G. Dy, and C.E. Brodley Feature selection for unsupervised learning J. Mach. Learn. Res. 5 12 2004 845 889
-
(2004)
J. Mach. Learn. Res.
, vol.5
, Issue.12
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
11
-
-
84868284545
-
Unsupervised feature selection using nonnegative spectral analysis
-
Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, Unsupervised feature selection using nonnegative spectral analysis, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012, pp. 1026-1032.
-
(2012)
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
, pp. 1026-1032
-
-
Li, Z.1
Yang, Y.2
Liu, J.3
Zhou, X.4
Lu, H.5
-
14
-
-
77955397866
-
Local-learning-based feature selection for high-dimensional data analysis
-
Y. Sun, S. Todorovic, and S. Goodison Local-learning-based feature selection for high-dimensional data analysis IEEE Trans. Pattern Anal. Mach. Intell. 32 9 2010 1610 1626
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.9
, pp. 1610-1626
-
-
Sun, Y.1
Todorovic, S.2
Goodison, S.3
-
15
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
H. Liu, and L. Yu Toward integrating feature selection algorithms for classification and clustering IEEE Trans. Knowl. Data Eng. 17 4 2005 491 502
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
17
-
-
0001001098
-
Feature selection for SVMS
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature selection for SVMS, in: Advances in Neural Information Processing Systems, vol. 12, 2000, pp. 668-674.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
19
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
-
(1997)
Artif. Intell.
, vol.97
, Issue.12
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
21
-
-
84876024189
-
Efficient greedy feature selection for unsupervised learning
-
A.K. Farahat, A. Ghodsi, and M.S. Kamel Efficient greedy feature selection for unsupervised learning Knowl. Inform. Syst. 35 2013 285 310
-
(2013)
Knowl. Inform. Syst.
, vol.35
, pp. 285-310
-
-
Farahat, A.K.1
Ghodsi, A.2
Kamel, M.S.3
-
22
-
-
84893288034
-
Efficient online learning for multitask feature selection
-
H. Yang, M.R. Lyu, and I. King Efficient online learning for multitask feature selection ACM Trans. Knowl. Discov. Data 7 2 2013 1 27
-
(2013)
ACM Trans. Knowl. Discov. Data
, vol.7
, Issue.2
, pp. 1-27
-
-
Yang, H.1
Lyu, M.R.2
King, I.3
-
23
-
-
84862024860
-
Feature selection via dependence maximization
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt Feature selection via dependence maximization J. Mach. Learn. Res. 13 2012 1393 1434
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1393-1434
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
24
-
-
84878017358
-
Large margin subspace learning for feature selection
-
B. Liu, B. Fang, X. Liu, J. Chen, Z. Huang, and X. He Large margin subspace learning for feature selection Pattern Recog. 46 10 2013 2798 2806
-
(2013)
Pattern Recog.
, vol.46
, Issue.10
, pp. 2798-2806
-
-
Liu, B.1
Fang, B.2
Liu, X.3
Chen, J.4
Huang, Z.5
He, X.6
-
25
-
-
84873278481
-
On similarity preserving feature selection
-
Z. Zhao, L. Wang, H. Liu, and J. Ye On similarity preserving feature selection IEEE Trans. Knowl. Data Eng. 25 3 2013 619 632
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
27
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Advances in Neural Information Processing Systems, 2005, pp. 507-514.
-
(2005)
Advances in Neural Information Processing Systems
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
28
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 333-342.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
|