메뉴 건너뛰기




Volumn 106, Issue , 2015, Pages 207-221

GraSP: Geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex

Author keywords

Clustering comparison; MRF; Parcellation; Resting state fMRI

Indexed keywords

ADOLESCENT; ADULT; ANTERIOR CINGULATE; ARTICLE; BRAIN CORTEX; BRAIN MAPPING; BRAIN PARCELLATION; CHILD; CONTROLLED STUDY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; GEODESIC GRAPH BASED SEGMENTATION; HUMAN; IMAGE ANALYSIS; INFERIOR PARIETAL LOBULE; INTERMETHOD COMPARISON; INTRAPARIETAL SULCUS; MARKOV RANDOM FIELD; MATHEMATICAL COMPUTING; MATHEMATICAL PARAMETERS; NEUROIMAGING; PREFRONTAL CORTEX; PROCESS MODEL; PROCESS OPTIMIZATION; REPRODUCIBILITY; RESTING STATE NETWORK; STATISTICAL PARAMETERS; SUPPLEMENTARY MOTOR AREA; SYSTEM ANALYSIS; TASK POSITIVE NETWORK; TEMPORAL CORTEX; VISUAL CORTEX; ALGORITHM; ANATOMY AND HISTOLOGY; AUTOMATED PATTERN RECOGNITION; COMPUTER ASSISTED DIAGNOSIS; COMPUTER PROGRAM; CONNECTOME; IMAGE ENHANCEMENT; IMAGE SUBTRACTION; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; PROCEDURES; SENSITIVITY AND SPECIFICITY;

EID: 84920174367     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.11.008     Document Type: Article
Times cited : (65)

References (76)
  • 1
    • 84893824965 scopus 로고    scopus 로고
    • Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder
    • Baker J., Holmes A., Masters G., Yeo B., Krienen F., Buckner R., Öngür D. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 2014, 71:109-118.
    • (2014) JAMA Psychiatry , vol.71 , pp. 109-118
    • Baker, J.1    Holmes, A.2    Masters, G.3    Yeo, B.4    Krienen, F.5    Buckner, R.6    Öngür, D.7
  • 2
    • 0031397534 scopus 로고    scopus 로고
    • Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: reproducibility
    • Baumgartner R., Scarth G., Teichtmeister C., Somorjai R., Moser E. Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: reproducibility. J. Magn. Reson. Imaging 1997, 7:1094-1108.
    • (1997) J. Magn. Reson. Imaging , vol.7 , pp. 1094-1108
    • Baumgartner, R.1    Scarth, G.2    Teichtmeister, C.3    Somorjai, R.4    Moser, E.5
  • 4
    • 77952482885 scopus 로고    scopus 로고
    • Multi-level bootstrap analysis of stable clusters in resting-state fm
    • Bellec P., Rosa-Neto P., Lyttelton O.C., Benali H., Evans A.C. Multi-level bootstrap analysis of stable clusters in resting-state fm. NeuroImage 2010, 51:1126-1139.
    • (2010) NeuroImage , vol.51 , pp. 1126-1139
    • Bellec, P.1    Rosa-Neto, P.2    Lyttelton, O.C.3    Benali, H.4    Evans, A.C.5
  • 7
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Boykov Y., Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. PAMI 2004, 26:1124-1137.
    • (2004) IEEE Trans. PAMI , vol.26 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 8
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Boykov Y., Veksler O., Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 2001, 23:1222-1239.
    • (2001) IEEE Trans. PAMI , vol.23 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 10
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: graph theoretical analysis of structural and functional systems
    • Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10:186-198.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 11
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional mri data using independent component analysis
    • Calhoun V., Adali, Pearlson G., Pekar J. A method for making group inferences from functional mri data using independent component analysis. Hum. Brain Mapp. 2001, 14:140-151.
    • (2001) Hum. Brain Mapp. , vol.14 , pp. 140-151
    • Calhoun, V.1    Adali, P.G.2    Pekar, J.3
  • 13
    • 84863882574 scopus 로고    scopus 로고
    • A whole brain fMRI atlas generated via spatially constrained spectral clustering
    • Craddock R., James G., Holtzheimer P.I., Hu X., Mayberg H. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 2012, 33:1914-1928.
    • (2012) Hum. Brain Mapp. , vol.33 , pp. 1914-1928
    • Craddock, R.1    James, G.2    Holtzheimer, P.I.3    Hu, X.4    Mayberg, H.5
  • 14
    • 0032769093 scopus 로고    scopus 로고
    • Cortical surface-based analysis. I. Segmentation and surface reconstruction
    • Dale A., Fischl B., Sereno M. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 1999, 9:179-194.
    • (1999) NeuroImage , vol.9 , pp. 179-194
    • Dale, A.1    Fischl, B.2    Sereno, M.3
  • 17
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A., Laird N., Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39:1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 19
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • Dice L. Measures of the amount of ecologic association between species. Ecology 1945, 26:297-302.
    • (1945) Ecology , vol.26 , pp. 297-302
    • Dice, L.1
  • 20
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3(3):32-57.
    • (1973) J. Cybern. , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 24
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey B.J., Dueck D. Clustering by passing messages between data points. Science 2007, 315:972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 25
    • 79960532075 scopus 로고    scopus 로고
    • Deformable medical image registration: setting the state of the art with discrete methods
    • Glocker B., Sotiras A., Komodakis N., Paragios N. Deformable medical image registration: setting the state of the art with discrete methods. Annu. Rev. Biomed. Eng. 2011, 13:219-244.
    • (2011) Annu. Rev. Biomed. Eng. , vol.13 , pp. 219-244
    • Glocker, B.1    Sotiras, A.2    Komodakis, N.3    Paragios, N.4
  • 27
    • 67949092690 scopus 로고    scopus 로고
    • Accurate and robust brain image alignment using boundary-based registration
    • Greve D.N., Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 2009, 48:63-72.
    • (2009) NeuroImage , vol.48 , pp. 63-72
    • Greve, D.N.1    Fischl, B.2
  • 31
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L., Arabie P. Comparing partitions. J. Classif. 1985, 2:193-218.
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 32
    • 56349160115 scopus 로고    scopus 로고
    • Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models
    • Jbabdi S., Woolrich M., Behrens T. Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 2009, 44:373-384.
    • (2009) NeuroImage , vol.44 , pp. 373-384
    • Jbabdi, S.1    Woolrich, M.2    Behrens, T.3
  • 34
    • 84976789814 scopus 로고
    • Efficient algorithms for shortest paths in sparse networks
    • Johnson D.B. Efficient algorithms for shortest paths in sparse networks. J. ACM 1977, 24:1-13.
    • (1977) J. ACM , vol.24 , pp. 1-13
    • Johnson, D.B.1
  • 35
    • 72149115644 scopus 로고    scopus 로고
    • Defining functional SMA and pre-SMA subregions in human mfc using resting state fMRI: functional connectivity-based parcellation method
    • Kim J.H., Lee J.M., Jo H., Kim S., Lee J., Kim S., Seo S., Cox R., Na D., Kim S., Saad Z. Defining functional SMA and pre-SMA subregions in human mfc using resting state fMRI: functional connectivity-based parcellation method. NeuroImage 2010, 49:2375-2386.
    • (2010) NeuroImage , vol.49 , pp. 2375-2386
    • Kim, J.H.1    Lee, J.M.2    Jo, H.3    Kim, S.4    Lee, J.5    Kim, S.6    Seo, S.7    Cox, R.8    Na, D.9    Kim, S.10    Saad, Z.11
  • 37
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Kolmogorov V., Zabih R. What energy functions can be minimized via graph cuts?. IEEE Trans. PAMI 2004, 26:147-159.
    • (2004) IEEE Trans. PAMI , vol.26 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 38
    • 34447280839 scopus 로고    scopus 로고
    • Approximate labeling via graph-cuts based on linear programming
    • Komodakis N., Tziritas G. Approximate labeling via graph-cuts based on linear programming. IEEE Trans. PAMI 2007, 29:1436-1453.
    • (2007) IEEE Trans. PAMI , vol.29 , pp. 1436-1453
    • Komodakis, N.1    Tziritas, G.2
  • 39
    • 52949110978 scopus 로고    scopus 로고
    • Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal dual strategies
    • Komodakis N., Tziritas G., Paragios N. Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal dual strategies. Comput. Vis. Image Underst. 2008, 112:14-29.
    • (2008) Comput. Vis. Image Underst. , vol.112 , pp. 14-29
    • Komodakis, N.1    Tziritas, G.2    Paragios, N.3
  • 40
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • Lange T., Roth V., Braun M., Buhmann J. Stability-based validation of clustering solutions. Neural Comput. 2004, 16:1299-1323.
    • (2004) Neural Comput. , vol.16 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.3    Buhmann, J.4
  • 43
    • 77249084595 scopus 로고    scopus 로고
    • Discovering structure in the space of fMRI selectivity profiles
    • Lashkari D., Vul E., Kanwisher N., Golland P. Discovering structure in the space of fMRI selectivity profiles. NeuroImage 2010, 50:1085-1098.
    • (2010) NeuroImage , vol.50 , pp. 1085-1098
    • Lashkari, D.1    Vul, E.2    Kanwisher, N.3    Golland, P.4
  • 46
    • 80053979348 scopus 로고    scopus 로고
    • Monte Carlo expectation maximization with hidden Markov models to detect functional networks in resting-state fMRI
    • Machine Learning in Medical Imaging
    • Liu W., Awate S.P., Anderson J.S., Yurgelun-Todd D., Fletcher P.T. Monte Carlo expectation maximization with hidden Markov models to detect functional networks in resting-state fMRI. Lecture Notes in Computer Science 2011, 7009:59-66.
    • (2011) Lecture Notes in Computer Science , vol.7009 , pp. 59-66
    • Liu, W.1    Awate, S.P.2    Anderson, J.S.3    Yurgelun-Todd, D.4    Fletcher, P.T.5
  • 48
    • 0141869825 scopus 로고    scopus 로고
    • Region growing method for the analysis of functional MRI data
    • Lu Y., Jiang T., Zang Y. Region growing method for the analysis of functional MRI data. NeuroImage 2003, 20:445-465.
    • (2003) NeuroImage , vol.20 , pp. 445-465
    • Lu, Y.1    Jiang, T.2    Zang, Y.3
  • 53
    • 67349143735 scopus 로고    scopus 로고
    • Characterization and evaluation of similarity measures for pairs of clusterings
    • Pfitzner D., Leibbrandt R., Powers D. Characterization and evaluation of similarity measures for pairs of clusterings. Knowl. Inf. Syst. 2009, 19:361-394.
    • (2009) Knowl. Inf. Syst. , vol.19 , pp. 361-394
    • Pfitzner, D.1    Leibbrandt, R.2    Powers, D.3
  • 55
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 1987, 20:53-65.
    • (1987) Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 56
    • 84868247319 scopus 로고    scopus 로고
    • A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI
    • Ryali S., Chen T., Supekar K., Menon V. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI. NeuroImage 2013, 65:83-96.
    • (2013) NeuroImage , vol.65 , pp. 83-96
    • Ryali, S.1    Chen, T.2    Supekar, K.3    Menon, V.4
  • 57
    • 18144431880 scopus 로고    scopus 로고
    • Neurophysiological architecture of functional magnetic resonance images of human brain
    • Salvador R., Suckling J., Coleman M., Pickard J., Menon D., Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 2005, 15:1332-1342.
    • (2005) Cereb. Cortex , vol.15 , pp. 1332-1342
    • Salvador, R.1    Suckling, J.2    Coleman, M.3    Pickard, J.4    Menon, D.5    Bullmore, E.6
  • 58
    • 84867455814 scopus 로고    scopus 로고
    • An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
    • Satterthwaite T., Elliott M., Gerraty R., Ruparel K., Loughead J., Calkins M., Eickhoff S., Hakonarson H., Gur R., Gur R., Wolf D. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 2013, 64:240-256.
    • (2013) NeuroImage , vol.64 , pp. 240-256
    • Satterthwaite, T.1    Elliott, M.2    Gerraty, R.3    Ruparel, K.4    Loughead, J.5    Calkins, M.6    Eickhoff, S.7    Hakonarson, H.8    Gur, R.9    Gur, R.10    Wolf, D.11
  • 60
    • 77249138694 scopus 로고    scopus 로고
    • Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data
    • Shen X., Papademetris X., Constable R.T. Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data. NeuroImage 2010, 50:1027-1035.
    • (2010) NeuroImage , vol.50 , pp. 1027-1035
    • Shen, X.1    Papademetris, X.2    Constable, R.T.3
  • 61
    • 84879736587 scopus 로고    scopus 로고
    • Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
    • Shen X., Tokoglu F., Papademetris X., Constable R. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage 2013, 82:403-415.
    • (2013) NeuroImage , vol.82 , pp. 403-415
    • Shen, X.1    Tokoglu, F.2    Papademetris, X.3    Constable, R.4
  • 65
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
    • Thirion B., Flandin G., Pinel P., Roche A., Ciuciu P., Poline J. Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 2006, 27:678-693.
    • (2006) Hum. Brain Mapp. , vol.27 , pp. 678-693
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.6
  • 67
    • 0028245445 scopus 로고
    • A measure for brain complexity: relating functional segregation and integration in the nervous system
    • Tononi G., Sporns O., Edelman G. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:5033-5037.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 5033-5037
    • Tononi, G.1    Sporns, O.2    Edelman, G.3
  • 69
    • 44349149239 scopus 로고    scopus 로고
    • Normalized cut group clustering of resting-state fMRI data
    • van den Heuvel M., Mandl R., Hulshoff Pol H. Normalized cut group clustering of resting-state fMRI data. PLoS One 2008, 3:e2001.
    • (2008) PLoS One , vol.3 , pp. e2001
    • van den Heuvel, M.1    Mandl, R.2    Hulshoff Pol, H.3
  • 73
    • 84885382627 scopus 로고    scopus 로고
    • Markov random field modeling, inference & learning in computer vision & image understanding: a survey
    • Wang C., Komodakis N., Paragios N. Markov random field modeling, inference & learning in computer vision & image understanding: a survey. Comput. Vis. Image Underst. 2013, 117:1610-1627.
    • (2013) Comput. Vis. Image Underst. , vol.117 , pp. 1610-1627
    • Wang, C.1    Komodakis, N.2    Paragios, N.3
  • 74
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58:236-244.
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236-244
    • Ward, J.1
  • 76
    • 80054853130 scopus 로고    scopus 로고
    • Analysis of fMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach
    • Zhang J., Tuo X., Yuan Z., Liao W., Chen H. Analysis of fMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach. IEEE Trans. Biomed. Eng. 2011, 58:3184-3196.
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , pp. 3184-3196
    • Zhang, J.1    Tuo, X.2    Yuan, Z.3    Liao, W.4    Chen, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.