메뉴 건너뛰기




Volumn , Issue , 2010, Pages 15-22

Nonparametric hierarchical Bayesian model for functional brain parcellation

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC DISCOVERY; BRAIN IMAGES; BRAIN RESPONSE; DATA-DRIVEN METHODS; FUNCTIONAL RESPONSE; FUNCTIONAL SIGNALS; GENERATIVE MODEL; HIERARCHICAL BAYESIAN MODELS; HIERARCHICAL DIRICHLET PROCESS; NON-PARAMETRIC; VISUAL CORTEXES;

EID: 77956541735     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2010.5543434     Document Type: Conference Paper
Times cited : (5)

References (25)
  • 1
    • 0031397534 scopus 로고    scopus 로고
    • Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: Reproducibility
    • 1
    • R. Baumgartner, G. Scarth, C. Teichtmeister, R. Somorjai, and E. Moser. Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: reproducibility. J Magn Reson Imaging, 7(6):1094-1108, 1997. 1
    • (1997) J Magn Reson Imaging , vol.7 , Issue.6 , pp. 1094-1108
    • Baumgartner, R.1    Scarth, G.2    Teichtmeister, C.3    Somorjai, R.4    Moser, E.5
  • 2
    • 1342324773 scopus 로고    scopus 로고
    • Probabilistic independent component analysis for functional magnetic resonance imaging
    • 1. 8
    • C. Beckmann and S. Smith. Probabilistic independent component analysis for functional magnetic resonance imaging. TMI, 23(2):137-152, 2004. 1, 8
    • (2004) TMI , vol.23 , Issue.2 , pp. 137-152
    • Beckmann, C.1    Smith, S.2
  • 3
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for multisubject FMRI analysis
    • 2. 5
    • C. Beckmann and S. Smith. Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage, 25(1):294-311, 2005. 2, 5
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 294-311
    • Beckmann, C.1    Smith, S.2
  • 4
    • 0032736320 scopus 로고    scopus 로고
    • Real-time 3D image registration for functional MRI
    • 5
    • R. Cox and A. Jesmanowicz. Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine, 42(6):1014-1018, 1999. 5
    • (1999) Magnetic Resonance in Medicine , vol.42 , Issue.6 , pp. 1014-1018
    • Cox, R.1    Jesmanowicz, A.2
  • 6
    • 0028946011 scopus 로고
    • Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold
    • 2
    • S. Forman, J. Cohen, M. Fitzgerald, W. Eddy, M. Mintun, and D. Noll. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5):636-647, 1995. 2
    • (1995) Magnetic Resonance in Medicine , vol.33 , Issue.5 , pp. 636-647
    • Forman, S.1    Cohen, J.2    Fitzgerald, M.3    Eddy, W.4    Mintun, M.5    Noll, D.6
  • 7
    • 85013881961 scopus 로고    scopus 로고
    • K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, editors. Academic Press, Elsevier. 2. 5
    • K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, editors. Statistical Parametric Mapping: the Analysis of Functional Brain Images. Academic Press, Elsevier, 2007. 2, 5
    • (2007) Statistical Parametric Mapping: The Analysis of Functional Brain Images
  • 8
    • 38149111048 scopus 로고    scopus 로고
    • Detection of spatial activation patterns as unsupervised segmentation of fMRI data
    • 1
    • P. Golland, Y. Golland, and R. Malach. Detection of spatial activation patterns as unsupervised segmentation of fMRI data. In MICCAI, 2007. 1
    • (2007) MICCAI
    • Golland, P.1    Golland, Y.2    Malach, R.3
  • 10
    • 67949092690 scopus 로고    scopus 로고
    • Accurate and robust brain image alignment using boundary-based registration
    • 5
    • D. Greve and B. Fischl. Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1):63-72, 2009. 5
    • (2009) NeuroImage , vol.48 , Issue.1 , pp. 63-72
    • Greve, D.1    Fischl, B.2
  • 11
    • 56349160115 scopus 로고    scopus 로고
    • Multiple-subjects connectivity-based parcellation using hierarchical dirichlet process mixture models
    • 2
    • S. Jbabdi, M. Woolrich, and T. Behrens. Multiple-subjects connectivity-based parcellation using hierarchical dirichlet process mixture models. NeuroImage, 44(2):373-384, 2009. 2
    • (2009) NeuroImage , vol.44 , Issue.2 , pp. 373-384
    • Jbabdi, S.1    Woolrich, M.2    Behrens, T.3
  • 12
    • 34548534637 scopus 로고    scopus 로고
    • Hierarchical Dirichlet processes with random effects
    • 2
    • S. Kim and P. Smyth. Hierarchical Dirichlet processes with random effects. In NIPS, 2007. 2
    • (2007) NIPS
    • Kim, S.1    Smyth, P.2
  • 13
    • 70349339544 scopus 로고    scopus 로고
    • Exploratory fMRI analysis without spatial normalization
    • 1
    • D. Lashkari and P. Golland. Exploratory fMRI analysis without spatial normalization. In IPMI, 2009. 1
    • (2009) IPMI
    • Lashkari, D.1    Golland, P.2
  • 14
    • 77249084595 scopus 로고    scopus 로고
    • Discovering structure in the space of fMRI selectivity profiles
    • 1. 2. 5
    • D. Lashkari, E. Vul, N. Kanwisher, and P. Golland. Discovering structure in the space of fMRI selectivity profiles. NeuroImage, 50(3):1085-1098, 2010. 1, 2, 5
    • (2010) NeuroImage , vol.50 , Issue.3 , pp. 1085-1098
    • Lashkari, D.1    Vul, E.2    Kanwisher, N.3    Golland, P.4
  • 15
    • 27644451565 scopus 로고    scopus 로고
    • Joint detection-estimation of brain activity in functional MRI: A multichannel deconvolution solution
    • 3
    • S. Makni, P. Ciuciu, J. Idier, and J.-B. Poline. Joint detection-estimation of brain activity in functional MRI: a multichannel deconvolution solution. TSP, 53(9):3488-3502, 2005. 3
    • (2005) TSP , vol.53 , Issue.9 , pp. 3488-3502
    • Makni, S.1    Ciuciu, P.2    Idier, J.3    Poline, J.-B.4
  • 17
    • 84899022480 scopus 로고    scopus 로고
    • Automatic choice of dimensionality for PCA
    • 6
    • T. Minka. Automatic choice of dimensionality for PCA. NIPS, 2001. 6
    • (2001) NIPS
    • Minka, T.1
  • 18
    • 0036025698 scopus 로고    scopus 로고
    • Poisson-Dirichlet and GEM invariant distributions for split-andmerge transformations of an interval partition
    • 4
    • J. Pitman. Poisson-Dirichlet and GEM invariant distributions for split-andmerge transformations of an interval partition. Combinatorics, Prob, Comput, 11(5):501-514, 2002. 4
    • (2002) Combinatorics, Prob, Comput , vol.11 , Issue.5 , pp. 501-514
    • Pitman, J.1
  • 20
    • 33749249312 scopus 로고    scopus 로고
    • Hierarchical dirichlet processes
    • 2, 3, 4, 5
    • Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical dirichlet processes. JASA, 101(476):1566-1581, 2006. 2, 3, 4, 5
    • (2006) JASA , vol.101 , Issue.476 , pp. 1566-1581
    • Teh, Y.1    Jordan, M.2    Beal, M.3    Blei, D.4
  • 21
    • 85162054776 scopus 로고    scopus 로고
    • Collapsed variational inference for HDP
    • 2, 4, 5
    • Y. Teh, K. Kurihara, and M. Welling. Collapsed variational inference for HDP. In NIPS, 2008. 2, 4, 5
    • (2008) NIPS
    • Teh, Y.1    Kurihara, K.2    Welling, M.3
  • 22
    • 84864061876 scopus 로고    scopus 로고
    • A collapsed variational Bayesian inference algorithm for latent dirichlet allocation
    • 4
    • Y. Teh, D. Newman, and M.Welling. A collapsed variational Bayesian inference algorithm for latent dirichlet allocation. In NIPS, 2007. 4
    • (2007) NIPS
    • Teh, Y.1    Newman, D.2    Welling, M.3
  • 23
    • 10244249137 scopus 로고    scopus 로고
    • Feature characterization in fMRI data: The Information Bottleneck approach
    • 1
    • B. Thirion and O. Faugeras. Feature characterization in fMRI data: the Information Bottleneck approach. Medical Image Analysis, 8(4):403-419, 2004. 1
    • (2004) Medical Image Analysis , vol.8 , Issue.4 , pp. 403-419
    • Thirion, B.1    Faugeras, O.2
  • 24
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets
    • 1
    • B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu, and J. Poline. Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum Brain Mapp, 27(8):678-693, 2006. 1
    • (2006) Hum Brain Mapp , vol.27 , Issue.8 , pp. 678-693
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.