메뉴 건너뛰기




Volumn 64, Issue 1, 2015, Pages 49-59

Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice

Author keywords

[No Author keywords available]

Indexed keywords

2 OXOISOVALERATE DEHYDROGENASE (LIPOAMIDE); ADIPONECTIN; BRANCHED CHAIN AMINO ACID; MITOCHONDRIAL PHOSPHATASE 2C; PHOSPHATASE; UNCLASSIFIED DRUG; ADIPOQ PROTEIN, MOUSE; AMPK ALPHA1 SUBUNIT, MOUSE; AMPK ALPHA2 SUBUNIT, MOUSE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; PHOSPHOPROTEIN PHOSPHATASE; PROTEIN PHOSPHATASE 2C; SMALL INTERFERING RNA;

EID: 84920054087     PISSN: 00121797     EISSN: 1939327X     Source Type: Journal    
DOI: 10.2337/db14-0312     Document Type: Article
Times cited : (103)

References (40)
  • 1
    • 77951232682 scopus 로고    scopus 로고
    • Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels
    • Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem 2010;285:11348-11356
    • (2010) J Biol Chem , vol.285 , pp. 11348-11356
    • Herman, M.A.1    She, P.2    Peroni, O.D.3    Lynch, C.J.4    Kahn, B.B.5
  • 2
    • 84878983057 scopus 로고    scopus 로고
    • Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain a-ketoacid dehydrogenase kinase
    • Tso SC, Qi X, Gui WJ, et al. Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain a-ketoacid dehydrogenase kinase. Proc Natl Acad Sci USA 2013;110:9728-9733
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 9728-9733
    • Tso, S.C.1    Qi, X.2    Gui, W.J.3
  • 3
    • 84862282554 scopus 로고    scopus 로고
    • Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state
    • Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2011;2:445-456
    • (2011) Adv Nutr , vol.2 , pp. 445-456
    • Adams, S.H.1
  • 4
    • 0345735297 scopus 로고    scopus 로고
    • Mechanisms responsible for regulation of branched-chain amino acid catabolism
    • Harris RA, Joshi M, Jeoung NH. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 2004; 313:391-396
    • (2004) Biochem Biophys Res Commun , vol.313 , pp. 391-396
    • Harris, R.A.1    Joshi, M.2    Jeoung, N.H.3
  • 5
    • 84878494552 scopus 로고    scopus 로고
    • Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics
    • Xu F, Tavintharan S, Sum CF, Woon K, Lim SC, Ong CN. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J Clin Endocrinol Metab 2013;98:E1060-E1065
    • (2013) J Clin Endocrinol Metab , vol.98 , pp. E1060-E1065
    • Xu, F.1    Tavintharan, S.2    Sum, C.F.3    Woon, K.4    Lim, S.C.5    Ong, C.N.6
  • 6
    • 77649187511 scopus 로고    scopus 로고
    • Regulation of hepatic branched-chain alpha-keto acid dehydrogenase kinase in a rat model for type 2 diabetes mellitus at different stages of the disease
    • Doisaki M, Katano Y, Nakano I, et al. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase kinase in a rat model for type 2 diabetes mellitus at different stages of the disease. Biochem Biophys Res Commun 2010;393: 303-307
    • (2010) Biochem Biophys Res Commun , vol.393 , pp. 303-307
    • Doisaki, M.1    Katano, Y.2    Nakano, I.3
  • 7
    • 70149109567 scopus 로고    scopus 로고
    • Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus
    • Bajotto G, Murakami T, Nagasaki M, Sato Y, Shimomura Y. Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus. Metabolism 2009;58:1489-1495
    • (2009) Metabolism , vol.58 , pp. 1489-1495
    • Bajotto, G.1    Murakami, T.2    Nagasaki, M.3    Sato, Y.4    Shimomura, Y.5
  • 8
    • 37149027613 scopus 로고    scopus 로고
    • Obesityrelated elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism
    • She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesityrelated elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab 2007;293:E1552-E1563
    • (2007) Am J Physiol Endocrinol Metab , vol.293 , pp. E1552-E1563
    • She, P.1    Van Horn, C.2    Reid, T.3    Hutson, S.M.4    Cooney, R.N.5    Lynch, C.J.6
  • 9
    • 77949267650 scopus 로고    scopus 로고
    • Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men
    • Tai ES, Tan ML, Stevens RD, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010;53:757-767
    • (2010) Diabetologia , vol.53 , pp. 757-767
    • Tai, E.S.1    Tan, M.L.2    Stevens, R.D.3
  • 10
    • 63449111894 scopus 로고    scopus 로고
    • A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
    • Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009;9:311-326
    • (2009) Cell Metab , vol.9 , pp. 311-326
    • Newgard, C.B.1    An, J.2    Bain, J.R.3
  • 11
    • 84856728068 scopus 로고    scopus 로고
    • Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss
    • Shah SH, Crosslin DR, Haynes CS, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012;55:321-330
    • (2012) Diabetologia , vol.55 , pp. 321-330
    • Shah, S.H.1    Crosslin, D.R.2    Haynes, C.S.3
  • 12
    • 84862757927 scopus 로고    scopus 로고
    • Insulin resistance and the metabolism of branched-chain amino acids in humans
    • Adeva MM, Calviño J, Souto G, Donapetry C. Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 2012;43:171-181
    • (2012) Amino Acids , vol.43 , pp. 171-181
    • Adeva, M.M.1    Calviño, J.2    Souto, G.3    Donapetry, C.4
  • 13
    • 0035851205 scopus 로고    scopus 로고
    • Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells
    • Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 2001;276:38052-38060
    • (2001) J Biol Chem , vol.276 , pp. 38052-38060
    • Tremblay, F.1    Marette, A.2
  • 14
    • 20844451550 scopus 로고    scopus 로고
    • Modulation of insulin action by dietary proteins and amino acids: Role of the mammalian target of rapamycin nutrient sensing pathway
    • Tremblay F, Jacques H, Marette A. Modulation of insulin action by dietary proteins and amino acids: role of the mammalian target of rapamycin nutrient sensing pathway. Curr Opin Clin Nutr Metab Care 2005;8:457-462
    • (2005) Curr Opin Clin Nutr Metab Care , vol.8 , pp. 457-462
    • Tremblay, F.1    Jacques, H.2    Marette, A.3
  • 15
    • 84874412069 scopus 로고    scopus 로고
    • Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults
    • Würtz P, Soininen P, Kangas AJ, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013;36: 648-655
    • (2013) Diabetes Care , vol.36 , pp. 648-655
    • Würtz, P.1    Soininen, P.2    Kangas, A.J.3
  • 16
    • 79953737332 scopus 로고    scopus 로고
    • Metabolite profiles and the risk of developing diabetes
    • Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011;17:448-453
    • (2011) Nat Med , vol.17 , pp. 448-453
    • Wang, T.J.1    Larson, M.G.2    Vasan, R.S.3
  • 17
    • 84861304175 scopus 로고    scopus 로고
    • Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease
    • Shah SH, Sun JL, Stevens RD, et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J 2012;163:844-850, e1
    • (2012) Am Heart J , vol.163 , pp. 844e1-850e1
    • Shah, S.H.1    Sun, J.L.2    Stevens, R.D.3
  • 18
    • 67651005823 scopus 로고    scopus 로고
    • Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells
    • Lu G, Sun H, She P, et al. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J Clin Invest 2009;119:1678-1687
    • (2009) J Clin Invest , vol.119 , pp. 1678-1687
    • Lu, G.1    Sun, H.2    She, P.3
  • 20
    • 84866133825 scopus 로고    scopus 로고
    • Adiponectin: Mechanistic insights and clinical implications
    • Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia 2012;55:2319-2326
    • (2012) Diabetologia , vol.55 , pp. 2319-2326
    • Turer, A.T.1    Scherer, P.E.2
  • 21
    • 0036851817 scopus 로고    scopus 로고
    • Adiponectin stimulates glucose utilization and fatty-Acid oxidation by activating AMP-Activated protein kinase
    • Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-Acid oxidation by activating AMP-Activated protein kinase. Nat Med 2002;8:1288-1295
    • (2002) Nat Med , vol.8 , pp. 1288-1295
    • Yamauchi, T.1    Kamon, J.2    Minokoshi, Y.3
  • 22
    • 34147163464 scopus 로고    scopus 로고
    • Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress
    • Tao L, Gao E, Jiao X, et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 2007;115:1408-1416
    • (2007) Circulation , vol.115 , pp. 1408-1416
    • Tao, L.1    Gao, E.2    Jiao, X.3
  • 23
    • 59149084060 scopus 로고    scopus 로고
    • Endothelial dysfunction in adiponectin deficiency and its mechanisms involved
    • Cao Y, Tao L, Yuan Y, et al. Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol 2009;46:413-419
    • (2009) J Mol Cell Cardiol , vol.46 , pp. 413-419
    • Cao, Y.1    Tao, L.2    Yuan, Y.3
  • 24
    • 84874406268 scopus 로고    scopus 로고
    • Adiponectin corrects high-fat diet-induced disturbances in muscle metabolomic profile and whole-body glucose homeostasis
    • Liu Y, Turdi S, Park T, et al. Adiponectin corrects high-fat diet-induced disturbances in muscle metabolomic profile and whole-body glucose homeostasis. Diabetes 2013;62:743-752
    • (2013) Diabetes , vol.62 , pp. 743-752
    • Liu, Y.1    Turdi, S.2    Park, T.3
  • 25
    • 67650169799 scopus 로고    scopus 로고
    • Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-Analysis
    • Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-Analysis. JAMA 2009;302:179-188
    • (2009) JAMA , vol.302 , pp. 179-188
    • Li, S.1    Shin, H.J.2    Ding, E.L.3    Van Dam, R.M.4
  • 26
    • 0034999667 scopus 로고    scopus 로고
    • Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia
    • Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001;86:1930-1935
    • (2001) J Clin Endocrinol Metab , vol.86 , pp. 1930-1935
    • Weyer, C.1    Funahashi, T.2    Tanaka, S.3
  • 27
    • 84863622578 scopus 로고    scopus 로고
    • Tissue-specific and nutrient regulation of the branched-chain a-keto acid dehydrogenase phosphatase, protein phosphatase 2Cm (PP2Cm)
    • Zhou M, Lu G, Gao C, Wang Y, Sun H. Tissue-specific and nutrient regulation of the branched-chain a-keto acid dehydrogenase phosphatase, protein phosphatase 2Cm (PP2Cm). J Biol Chem 2012;287:23397-23406
    • (2012) J Biol Chem , vol.287 , pp. 23397-23406
    • Zhou, M.1    Lu, G.2    Gao, C.3    Wang, Y.4    Sun, H.5
  • 28
    • 65549131015 scopus 로고    scopus 로고
    • The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model
    • Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res 2008;2008:704045
    • (2008) Exp Diabetes Res , vol.2008 , pp. 704045
    • Zhang, M.1    Lv, X.Y.2    Li, J.3    Xu, Z.G.4    Chen, L.5
  • 29
    • 22744446757 scopus 로고    scopus 로고
    • Ornithine alphaketoglutarate metabolism in the healthy rat in the postabsorptive state
    • Loï C, Nakib S, Neveux N, Arnaud-Battandier F, Cynober L. Ornithine alphaketoglutarate metabolism in the healthy rat in the postabsorptive state. Metabolism 2005;54:1108-1114
    • (2005) Metabolism , vol.54 , pp. 1108-1114
    • Loï, C.1    Nakib, S.2    Neveux, N.3    Arnaud-Battandier, F.4    Cynober, L.5
  • 30
    • 0033858080 scopus 로고    scopus 로고
    • Determination of branched-chain alpha-keto acid dehydrogenase activity state and branched- chain alpha-keto acid dehydrogenase kinase activity and protein in mammalian tissues
    • Nakai N, Kobayashi R, Popov KM, Harris RA, Shimomura Y. Determination of branched-chain alpha-keto acid dehydrogenase activity state and branched- chain alpha-keto acid dehydrogenase kinase activity and protein in mammalian tissues. Methods Enzymol 2000;324:48-62
    • (2000) Methods Enzymol , vol.324 , pp. 48-62
    • Nakai, N.1    Kobayashi, R.2    Popov, K.M.3    Harris, R.A.4    Shimomura, Y.5
  • 31
    • 63849085094 scopus 로고    scopus 로고
    • Targeting the AMPK pathway for the treatment of Type 2 diabetes
    • Viollet B, Lantier L, Devin-Leclerc J, et al. Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci (Landmark Ed) 2009;14:3380-3400
    • (2009) Front Biosci (Landmark Ed) , vol.14 , pp. 3380-3400
    • Viollet, B.1    Lantier, L.2    Devin-Leclerc, J.3
  • 32
    • 0037983775 scopus 로고    scopus 로고
    • Involvement of AMP-Activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes
    • Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-Activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 2003;52: 1355-1363
    • (2003) Diabetes , vol.52 , pp. 1355-1363
    • Wu, X.1    Motoshima, H.2    Mahadev, K.3    Stalker, T.J.4    Scalia, R.5    Goldstein, B.J.6
  • 33
    • 20344396621 scopus 로고    scopus 로고
    • Branched-chain [corrected] amino acid metabolism: Implications for establishing safe intakes
    • Hutson SM, Sweatt AJ, Lanoue KF. Branched-chain [corrected] amino acid metabolism: Implications for establishing safe intakes. J Nutr 2005;135(Suppl.): 1557S-1564S
    • (2005) J Nutr , vol.135 , pp. 1557S-1564S
    • Hutson, S.M.1    Sweatt, A.J.2    Lanoue, K.F.3
  • 34
    • 0034141355 scopus 로고    scopus 로고
    • The regulation of AMP-Activated protein kinase by phosphorylation
    • Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-Activated protein kinase by phosphorylation. Biochem J 2000;345:437-443
    • (2000) Biochem J , vol.345 , pp. 437-443
    • Stein, S.C.1    Woods, A.2    Jones, N.A.3    Davison, M.D.4    Carling, D.5
  • 35
    • 84874792421 scopus 로고    scopus 로고
    • Insulin resistance and the metabolism of branched-chain amino acids
    • Lu J, Xie G, Jia W, Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front Med 2013;7:53-59
    • (2013) Front Med , vol.7 , pp. 53-59
    • Lu, J.1    Xie, G.2    Jia, W.3    Jia, W.4
  • 36
    • 45849128681 scopus 로고    scopus 로고
    • Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus
    • Kuzuya T, Katano Y, Nakano I, et al. Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochem Biophys Res Commun 2008;373:94-98
    • (2008) Biochem Biophys Res Commun , vol.373 , pp. 94-98
    • Kuzuya, T.1    Katano, Y.2    Nakano, I.3
  • 37
    • 84873404989 scopus 로고    scopus 로고
    • Adiponectin receptor as a key player in healthy longevity and obesity-related diseases
    • Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab 2013;17:185-196
    • (2013) Cell Metab , vol.17 , pp. 185-196
    • Yamauchi, T.1    Kadowaki, T.2
  • 38
    • 34147129534 scopus 로고    scopus 로고
    • A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development
    • Lu G, Ren S, Korge P, et al. A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes Dev 2007;21: 784-796
    • (2007) Genes Dev , vol.21 , pp. 784-796
    • Lu, G.1    Ren, S.2    Korge, P.3
  • 39
    • 20844451123 scopus 로고    scopus 로고
    • AMP-Activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism
    • Kahn BB, Alquier T, Carling D, Hardie DG. AMP-Activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005;1:15-25
    • (2005) Cell Metab , vol.1 , pp. 15-25
    • Kahn, B.B.1    Alquier, T.2    Carling, D.3    Hardie, D.G.4
  • 40
    • 80051960516 scopus 로고    scopus 로고
    • Systemic adiponectin malfunction as a risk factor for cardiovascular disease
    • Lau WB, Tao L, Wang Y, Li R, Ma XL. Systemic adiponectin malfunction as a risk factor for cardiovascular disease. Antioxid Redox Signal 2011;15: 1863-1873
    • (2011) Antioxid Redox Signal , vol.15 , pp. 1863-1873
    • Lau, W.B.1    Tao, L.2    Wang, Y.3    Li, R.4    Ma, X.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.