-
1
-
-
80052253522
-
-
The MIT Press
-
Bach, Francis, Jenatton, Rodolphe, Mairal, Julien, and Obozinski, Guillaume. Convex Optimization with Sparsity-Inducing Norms. The MIT Press, 2011.
-
(2011)
Convex Optimization with Sparsity-Inducing Norms
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
2
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
Bergstra, James, Bardenet, Remi, Bengio, Yoshua, and Kegl, Balazs. Algorithms for hyper-parameter optimization. In Proc. of NIPS, 2011.
-
(2011)
Proc. of NIPS
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kegl, B.4
-
3
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
Blitzer, John, Dredze, Mark, and Pereira, Fernando. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proc. of ACL, 2007.
-
(2007)
Proc. of ACL
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
4
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Boija, and Eckstein, Jonathan. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1): 1-122, 2010.
-
(2010)
Foundations and Trends in Machine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
5
-
-
80053139009
-
Smoothing proximal gradient method for general structured sparse learning
-
Chen, Xi, Lin, Qihang, Kim, Seyoung, Carbonell, Jaime G., and Xing, Eric P. Smoothing proximal gradient method for general structured sparse learning. In Proc. of UAI, 2011.
-
(2011)
Proc. of UAI
-
-
Chen, X.1
Lin, Q.2
Kim, S.3
Carbonell, J.G.4
Xing, E.P.5
-
6
-
-
34249753618
-
Support-vector networks
-
Cortes, Corinna and Vapnik, Vladimir. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
75249102673
-
Efficient online and batch learning using forward backward splitting
-
Duchi, John and Singer, Yoram. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:2899-2934, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2899-2934
-
-
Duchi, J.1
Singer, Y.2
-
8
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
Forman, George. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:1289-1305, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
9
-
-
77953694851
-
A note on the group lasso and a sparse group lasso
-
Friedman, Jerome, Hastie, Trevor, and Tibshiran, Robert. A note on the group lasso and a sparse group lasso. Technical report, Stanford University, 2010.
-
(2010)
Technical Report, Stanford University
-
-
Friedman, J.1
Hastie, T.2
Tibshiran, R.3
-
10
-
-
84969334819
-
The split bregman method for 11-regularized problems
-
Goldstein, Tom and Osher, Stanley. The split bregman method for 11-regularized problems. SIAM Journal on Imaging Sciences, 2 (2):323-343, 2009.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.2
, pp. 323-343
-
-
Goldstein, T.1
Osher, S.2
-
12
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
Hoerl, Arthur E. and Kennard, Robert W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67, 1970.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
14
-
-
80555129673
-
Structured variable selection with sparsity-inducing norms
-
Jenatton, Rodolphe, Audibert, Jean-Yves, and Bach, Francis. Structured variable selection with sparsity-inducing norms. Journal of Machine Learning Research, 12:2777-2824, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2777-2824
-
-
Jenatton, R.1
Audibert, J.-Y.2
Bach, F.3
-
15
-
-
80053281077
-
Feature selection via block- regularized regression
-
Kim, Seyoung and Xing, Eric P. Feature selection via block- regularized regression. In Proc. Of UAI, 2008.
-
(2008)
Proc. of UAI
-
-
Kim, S.1
Xing, E.P.2
-
16
-
-
80053436853
-
Predicting risk from financial reports with regression
-
Kogan, Shimon, Levin, Dimitry, Routledge, Bryan R., Sagi, Jacob S., and Smith, Noah A. Predicting risk from financial reports with regression. In Proc. of HLT-NAACL, 2009.
-
(2009)
Proc. of HLT-NAACL
-
-
Kogan, S.1
Levin, D.2
Routledge, B.R.3
Sagi, J.S.4
Smith, N.A.5
-
17
-
-
80053247323
-
Online learning of structured predictors with multiple kernels
-
Martins, Andre F. T., Smith, Noah A., Aguiar, Pedro M. Q., and Figueiredo, Mario A. T. Online learning of structured predictors with multiple kernels. In Proc. of AISTATS, 2011a.
-
(2011)
Proc. of AISTATS
-
-
Martins, A.F.T.1
Smith, N.A.2
Aguiar, P.M.Q.3
Figueiredo, M.A.T.4
-
18
-
-
80053264451
-
Structured sparsity in structured prediction
-
Martins, Andre F. T., Smith, Noah A., Aguiar, Pedro M. Q., and Figueiredo, Mario A. T. Structured sparsity in structured prediction. In Proc. Of EMNLP, 2011b.
-
(2011)
Proc. of EMNLP
-
-
Martins, A.F.T.1
Smith, N.A.2
Aguiar, P.M.Q.3
Figueiredo, M.A.T.4
-
19
-
-
0041356704
-
Fonctions convexes duales et points proximaux dans un espace hilbertien
-
Moreau, J. J. Fonctions convexes duales et points proximaux dans un espace hilbertien. CR Acad. Sci. Paris Ser. A Math, 255: 2897-2899, 1963.
-
(1963)
CR Acad. Sci. Paris Ser. A Math
, vol.255
, pp. 2897-2899
-
-
Moreau, J.J.1
-
20
-
-
85141280473
-
A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
-
Pang, Bo and Lee, Lilian. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proc. of ACL, 2004.
-
(2004)
Proc. of ACL
-
-
Pang, B.1
Lee, L.2
-
22
-
-
0002380692
-
A method for nonlinear constraints in minimization problems
-
Fletcher, R. (ed.), Academic Press
-
Powell, M. J. D. A method for nonlinear constraints in minimization problems. In Fletcher, R. (ed.), Optimization, pp. 283-298. Academic Press, 1969.
-
(1969)
Optimization
, pp. 283-298
-
-
Powell, M.J.D.1
-
23
-
-
84862026135
-
Structured sparsity via alternating direction methods
-
Qin, Zhiwei (Tony) and Goldfarb, Donald. Structured sparsity via alternating direction methods. Journal of Machine Learning Research, 13:1435-1468, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 1435-1468
-
-
Qin, Z.1
Goldfarb, D.2
-
26
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment tree- bank
-
Socher, Richard, Perelygin, Alex, Wu, Jean, Chuang, Jason, Manning, Chris, Ng, Andrew, and Potts, Chris. Recursive deep models for semantic compositionality over a sentiment tree- bank. In Proc. ofEMNLP, 2013.
-
(2013)
Proc. OfEMNLP
-
-
Socher, R.1
Perelygin, A.2
Wu, J.3
Chuang, J.4
Manning, C.5
Ng, A.6
Potts, C.7
-
27
-
-
84860155692
-
Discovering fine-grained sentiment with latent variable structured prediction models
-
Tackstrom, Oscar and McDonald, Ryan. Discovering fine-grained sentiment with latent variable structured prediction models. In Proc. Of ECIR, 2011.
-
(2011)
Proc. of ECIR
-
-
Tackstrom, O.1
McDonald, R.2
-
28
-
-
80053357527
-
Get out the vote: Determining support or opposition from congressional floor-debate transcripts
-
Thomas, Matt, Pang, Bo, and Lee, Lilian. Get out the vote: Determining support or opposition from congressional floor-debate transcripts. In Proc. Of EMNLP, 2006.
-
(2006)
Proc. of EMNLP
-
-
Thomas, M.1
Pang, B.2
Lee, L.3
-
29
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, Robert. Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society B, 58(1):267-288, 1996.
-
(1996)
Journal of Royal Statistical Society B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
30
-
-
62549115747
-
Genome-wide association analysis by lasso penalized logistic regression
-
Wu, Tong Tong, Chen, Yi Fang, Hastie, Trevor, Sobel, Eric, and Lange, Kenneth. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 25(6):714-721, 2009.
-
(2009)
Bioinformatics
, vol.25
, Issue.6
, pp. 714-721
-
-
Wu, T.T.1
Chen, Y.F.2
Hastie, T.3
Sobel, E.4
Lange, K.5
-
31
-
-
84926139013
-
Textual predictors of bill survival in congressional committees
-
Yano, Tae, Smith, Noah A., and Wilkerson, John D. Textual predictors of bill survival in congressional committees. In Proc. of NAACL, 2012.
-
(2012)
Proc. of NAACL
-
-
Yano, T.1
Smith, N.A.2
Wilkerson, J.D.3
-
32
-
-
84255163690
-
Multi-level structured models for document sentiment classification
-
Yessenalina, Ainur, Yue, Yisong, and Cardie, Claire. Multi-level structured models for document sentiment classification. In Proc. Of EMNLP, 2010.
-
(2010)
Proc. of EMNLP
-
-
Yessenalina, A.1
Yue, Y.2
Cardie, C.3
-
33
-
-
80053284317
-
Predicting a scientific communitys response to an article
-
Yogatama, Dani, Heilman, Michael, O'Connor, Brendan, Dyer, Chris, Routledge, Bryan R., and Smith, Noah A. Predicting a scientific communitys response to an article. In Proc. of EMNLP, 2011.
-
(2011)
Proc. of EMNLP
-
-
Yogatama, D.1
Heilman, M.2
O'Connor, B.3
Dyer, C.4
Routledge, B.R.5
Smith, N.A.6
-
34
-
-
84880854914
-
Efficient methods for overlapping group lasso
-
Yuan, Lei, Liu, Jun, and Ye, Jieping. Efficient methods for overlapping group lasso. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9):2104-2116, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.9
, pp. 2104-2116
-
-
Yuan, L.1
Liu, J.2
Ye, J.3
-
35
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, Ming and Lin, Yi. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68(1):49-67, 2006.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
36
-
-
79958251080
-
Modeling annotators: A generative approach to learning from annotator rationales
-
Zaidan, Omar F. and Eisner, Jason. Modeling annotators: A generative approach to learning from annotator rationales. In Proc. of EMNLP, 2008.
-
(2008)
Proc. of EMNLP
-
-
Zaidan, O.F.1
Eisner, J.2
-
37
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, Hui and Hastie, Trevor. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67:301-320, 2005.
-
(2005)
Journal of the Royal Statistical Society, Series B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|