메뉴 건너뛰기




Volumn , Issue , 2012, Pages 793-802

Textual predictors of bill survival in congressional committees

Author keywords

[No Author keywords available]

Indexed keywords

% REDUCTIONS; AGENDA SETTINGS; POLICY MAKING; PREDICTION ERRORS; PREDICTIVE MODELS;

EID: 84926139013     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (54)

References (24)
  • 3
    • 62249186704 scopus 로고    scopus 로고
    • Lexical cohesion analysis of political speech
    • Beata Beigman Klebanov, Daniel Diermeier, and Eyal Beigman. 2008. Lexical cohesion analysis of political speech. Political Analysis, 16(4):447-463.
    • (2008) Political Analysis , vol.16 , Issue.4 , pp. 447-463
    • Klebanov, B.B.1    Diermeier, D.2    Beigman, E.3
  • 7
    • 80053439201 scopus 로고    scopus 로고
    • Predicting legislative roll calls from text
    • Sean Gerrish and David Blei. 2011. Predicting legislative roll calls from text. In Proc. of ICML.
    • (2011) Proc. of ICML
    • Gerrish, S.1    Blei, D.2
  • 9
    • 77951646429 scopus 로고    scopus 로고
    • A bayesian hierarchical topic model for political texts: Measuring expressed agendas in senate press releases
    • Justin Grimmer. 2010. A Bayesian hierarchical topic model for political texts: Measuring expressed agendas in Senate press releases. Political Analysis, 18(1):1-35.
    • (2010) Political Analysis , vol.18 , Issue.1 , pp. 1-35
    • Grimmer, J.1
  • 10
    • 3042714392 scopus 로고    scopus 로고
    • Multidimensional analysis of roll call data via bayesian simulation: Identification, estimation, inference, and model checking
    • Simon Jackman. 2001. Multidimensional analysis of roll call data via Bayesian simulation: Identification, estimation, inference, and model checking. Political Analysis, 9(3):227-241.
    • (2001) Political Analysis , vol.9 , Issue.3 , pp. 227-241
    • Jackman, S.1
  • 12
    • 0038385893 scopus 로고    scopus 로고
    • Extracting policy positions from political texts using words as data
    • Michael Laver, Kenneth Benoit, and John Garry. 2003. Extracting policy positions from political texts using words as data. American Political Science Review, 97(2):311-331.
    • (2003) American Political Science Review , vol.97 , Issue.2 , pp. 311-331
    • Laver, M.1    Benoit, K.2    Garry, J.3
  • 13
    • 74049136224 scopus 로고    scopus 로고
    • Reading the markets: Forecasting public opinion of political candidates by news analysis
    • Kevin Lerman, Ari Gilder, Mark Dredze, and Fernando Pereira. 2008. Reading the markets: Forecasting public opinion of political candidates by news analysis. In Proc. of COLING.
    • (2008) Proc. of COLING
    • Lerman, K.1    Gilder, A.2    Dredze, M.3    Pereira, F.4
  • 15
    • 62249190300 scopus 로고    scopus 로고
    • Fightin' words: Lexical feature selection and evaluation for identifying the content of political conflict
    • Burt Monroe, Michael Colaresi, and Kevin M. Quinn. 2008. Fightin' words: Lexical feature selection and evaluation for identifying the content of political conflict. Political Analysis, 16(4):372-403.
    • (2008) Political Analysis , vol.16 , Issue.4 , pp. 372-403
    • Monroe, B.1    Colaresi, M.2    Quinn, K.M.3
  • 18
    • 85141280473 scopus 로고    scopus 로고
    • A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
    • Bo Pang and Lillian Lee. 2004. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proc. of ACL.
    • (2004) Proc. of ACL
    • Pang, B.1    Lee, L.2
  • 19
    • 84936382675 scopus 로고
    • A spatial model for legislative roll call analysis
    • Keith T. Poole and Howard Rosenthal. 1985. A spatial model for legislative roll call analysis. American Journal of Political Science, 29(2):357-384.
    • (1985) American Journal of Political Science , vol.29 , Issue.2 , pp. 357-384
    • Poole, K.T.1    Rosenthal, H.2
  • 23
    • 85145541793 scopus 로고    scopus 로고
    • Probabilistic topic models
    • T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, editors, Lawrence Erlbaum
    • Mark Steyvers and Tom Griffiths. 2007. Probabilistic topic models. In T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, editors, Handbook of Latent Semantic Analysis. Lawrence Erlbaum.
    • (2007) Handbook of Latent Semantic Analysis
    • Steyvers, M.1    Griffiths, T.2
  • 24
    • 80053357527 scopus 로고    scopus 로고
    • Get out the vote: Determining support or opposition from congressional floor-debate transcripts
    • Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out the vote: Determining support or opposition from Congressional floor-debate transcripts. In Proc. of EMNLP.
    • (2006) Proc. of EMNLP
    • Thomas, M.1    Pang, B.2    Lee, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.