-
1
-
-
0042967741
-
Optimal structure identification with greedy search
-
D. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3(3): 507-554, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, Issue.3
, pp. 507-554
-
-
Chickering, D.1
-
2
-
-
33646107783
-
Large-sample learning of Bayesian networks is NP-hard
-
December
-
D. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res., 5: 1287-1330, December 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1287-1330
-
-
Chickering, D.1
Heckerman, D.2
Meek, C.3
-
4
-
-
84888146019
-
Proof supplement to learning sparse causal models is not NP-hard
-
Radboud University Nijmegen
-
T. Claassen, J. Mooij, and T. Heskes. Proof supplement to Learning sparse causal models is not NP-hard. Technical report, Faculty of Science, Radboud University Nijmegen, 2013. http://www.cs.ru.nl/~tomc/docs/NPHardSup.pdf.
-
(2013)
Technical Report, Faculty of Science
-
-
Claassen, T.1
Mooij, J.2
Heskes, T.3
-
5
-
-
84867677322
-
Learning high-dimensional DAGs with latent and selection variables
-
D. Colombo, M. Maathuis, M. Kalisch, and T. Richardson. Learning high-dimensional DAGs with latent and selection variables. The Annals of Statistics, 40(1): 294-321, 2012.
-
(2012)
The Annals of Statistics
, vol.40
, Issue.1
, pp. 294-321
-
-
Colombo, D.1
Maathuis, M.2
Kalisch, M.3
Richardson, T.4
-
6
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, (42): 393-405, 1990.
-
(1990)
Artificial Intelligence
, Issue.42
, pp. 393-405
-
-
Cooper, G.1
-
15
-
-
0036392228
-
Ancestral graph Markov models
-
T. Richardson and P. Spirtes. Ancestral graph Markov models. Ann. Stat., 30(4): 962-1030, 2002.
-
(2002)
Ann. Stat.
, vol.30
, Issue.4
, pp. 962-1030
-
-
Richardson, T.1
Spirtes, P.2
-
16
-
-
0042112503
-
An algorithm for causal inference in the presence of latent variables and selection bias
-
AAAI Press, Menlo Park, CA
-
P. Spirtes, C. Meek, and T. Richardson. An algorithm for causal inference in the presence of latent variables and selection bias. In Computation, Causation, and Discovery, pages 211-252. AAAI Press, Menlo Park, CA, 1999.
-
(1999)
Computation, Causation, and Discovery
, pp. 211-252
-
-
Spirtes, P.1
Meek, C.2
Richardson, T.3
-
17
-
-
0003614273
-
-
The MIT Press, Cambridge, Massachusetts, 2nd edition
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT Press, Cambridge, Massachusetts, 2nd edition, 2000.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
20
-
-
52949097616
-
On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
-
J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172(16-17): 1873-1896, 2008.
-
(2008)
Artificial Intelligence
, vol.172
, Issue.16-17
, pp. 1873-1896
-
-
Zhang, J.1
|