메뉴 건너뛰기




Volumn , Issue , 2013, Pages 172-181

Learning sparse causal models is not NP-hard

Author keywords

[No Author keywords available]

Indexed keywords

CAUSAL MODEL; HARDNESS RESULT; INDEPENDENCE TESTS; LATENT VARIABLE; NODE DEGREE; SELECTION BIAS; SOUND AND COMPLETE; SPARSE GRAPHS;

EID: 84888174793     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (97)

References (20)
  • 1
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3(3): 507-554, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , Issue.3 , pp. 507-554
    • Chickering, D.1
  • 2
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • December
    • D. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res., 5: 1287-1330, December 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1287-1330
    • Chickering, D.1    Heckerman, D.2    Meek, C.3
  • 4
    • 84888146019 scopus 로고    scopus 로고
    • Proof supplement to learning sparse causal models is not NP-hard
    • Radboud University Nijmegen
    • T. Claassen, J. Mooij, and T. Heskes. Proof supplement to Learning sparse causal models is not NP-hard. Technical report, Faculty of Science, Radboud University Nijmegen, 2013. http://www.cs.ru.nl/~tomc/docs/NPHardSup.pdf.
    • (2013) Technical Report, Faculty of Science
    • Claassen, T.1    Mooij, J.2    Heskes, T.3
  • 5
    • 84867677322 scopus 로고    scopus 로고
    • Learning high-dimensional DAGs with latent and selection variables
    • D. Colombo, M. Maathuis, M. Kalisch, and T. Richardson. Learning high-dimensional DAGs with latent and selection variables. The Annals of Statistics, 40(1): 294-321, 2012.
    • (2012) The Annals of Statistics , vol.40 , Issue.1 , pp. 294-321
    • Colombo, D.1    Maathuis, M.2    Kalisch, M.3    Richardson, T.4
  • 6
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, (42): 393-405, 1990.
    • (1990) Artificial Intelligence , Issue.42 , pp. 393-405
    • Cooper, G.1
  • 15
    • 0036392228 scopus 로고    scopus 로고
    • Ancestral graph Markov models
    • T. Richardson and P. Spirtes. Ancestral graph Markov models. Ann. Stat., 30(4): 962-1030, 2002.
    • (2002) Ann. Stat. , vol.30 , Issue.4 , pp. 962-1030
    • Richardson, T.1    Spirtes, P.2
  • 16
    • 0042112503 scopus 로고    scopus 로고
    • An algorithm for causal inference in the presence of latent variables and selection bias
    • AAAI Press, Menlo Park, CA
    • P. Spirtes, C. Meek, and T. Richardson. An algorithm for causal inference in the presence of latent variables and selection bias. In Computation, Causation, and Discovery, pages 211-252. AAAI Press, Menlo Park, CA, 1999.
    • (1999) Computation, Causation, and Discovery , pp. 211-252
    • Spirtes, P.1    Meek, C.2    Richardson, T.3
  • 20
    • 52949097616 scopus 로고    scopus 로고
    • On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
    • J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172(16-17): 1873-1896, 2008.
    • (2008) Artificial Intelligence , vol.172 , Issue.16-17 , pp. 1873-1896
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.