-
1
-
-
84878821957
-
Personalized medicine on oncology: Where have we come from and where are we going?
-
André F, Ciccolini J, Spano J, Penault-Llorca F, Mounier N, Freyer G, et al. Personalized medicine on oncology: where have we come from and where are we going? Pharmacogenomics 2013;14:931-9
-
(2013)
Pharmacogenomics
, vol.14
, pp. 931-939
-
-
André, F.1
Ciccolini, J.2
Spano, J.3
Penault-Llorca, F.4
Mounier, N.5
Freyer, G.6
-
2
-
-
84966166281
-
Dynamics of tumor growth
-
Laird A. Dynamics of tumor growth. Br J Cancer 1964;18:490-502.
-
(1964)
Br J Cancer
, vol.18
, pp. 490-502
-
-
Laird, A.1
-
4
-
-
84876958066
-
The model muddle: In search of tumor growth laws
-
Gerlee P. The model muddle: in search of tumor growth laws. Cancer Res 2013;73:2407-11.
-
(2013)
Cancer Res
, vol.73
, pp. 2407-2411
-
-
Gerlee, P.1
-
5
-
-
0001091624
-
Problems of organic growth
-
Bertalanffy L. Problems of organic growth. Nature 1949;163:156-8.
-
(1949)
Nature
, vol.163
, pp. 156-158
-
-
Bertalanffy, L.1
-
6
-
-
0030932272
-
A general model for the origin of allometric scaling laws in biology
-
West G, Brown J, Enquist B. A general model for the origin of allometric scaling laws in biology. Science 1997;276:122-6.
-
(1997)
Science
, vol.276
, pp. 122-126
-
-
West, G.1
Brown, J.2
Enquist, B.3
-
7
-
-
0142248836
-
Does tumour growth follow a "universal law"?
-
Guiot C, Degiorgis P, Delsanto P, Gabriele P, Deisboeck T. Does tumour growth follow a "universal law"? J Theor Biol 2003;2:147-51.
-
(2003)
J Theor Biol
, vol.2
, pp. 147-151
-
-
Guiot, C.1
Degiorgis, P.2
Delsanto, P.3
Gabriele, P.4
Deisboeck, T.5
-
8
-
-
38649104788
-
Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion
-
Gerisch A, Chaplain M. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 2008;250:684-704.
-
(2008)
J Theor Biol
, vol.250
, pp. 684-704
-
-
Gerisch, A.1
Chaplain, M.2
-
9
-
-
45449126571
-
Mathematical models of cancer stem cells
-
Michor F. Mathematical models of cancer stem cells. J Clin Oncol 2008;26:2854-62.
-
(2008)
J Clin Oncol
, vol.26
, pp. 2854-2862
-
-
Michor, F.1
-
10
-
-
84875810449
-
Regulation of tumor dormancy and role of microenvironment: A mathematical mode
-
Kim Y, Boushaba K. Regulation of tumor dormancy and role of microenvironment: a mathematical mode. Adv Exp Med Biol 2013;734:237-59.
-
(2013)
Adv Exp Med Biol
, vol.734
, pp. 237-259
-
-
Kim, Y.1
Boushaba, K.2
-
12
-
-
33750475202
-
Mathematical models of targeted cancer therapy
-
Abbot L, Michor F. Mathematical models of targeted cancer therapy. Br J Cancer 2006;95:1136-41.
-
(2006)
Br J Cancer
, vol.95
, pp. 1136-1141
-
-
Abbot, L.1
Michor, F.2
-
13
-
-
84875022134
-
Modelling non-homogeneous stochastic reaction-diffusion systems: The case study of gemcitaine-treated non-small cell lung cancer growth
-
S
-
Lecca P, Morpurgo D. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitaine-treated non-small cell lung cancer growth. BMC Bioinformatics 2012;13:S.
-
(2012)
BMC Bioinformatics
, vol.13
-
-
Lecca, P.1
Morpurgo, D.2
-
14
-
-
84907434598
-
Mathematical modelling of the metastatic process
-
Malek A, editor. New York: Springer
-
Scott J, Gerlee P, Basanta D, Fletcher A, Maini P, Anderson A. Mathematical modelling of the metastatic process. In:Malek A, editor. Experimental Metastasis: Modeling and Analysis. New York: Springer; 2013. p. 189-208.
-
(2013)
Experimental Metastasis: Modeling and Analysis
, pp. 189-208
-
-
Scott, J.1
Gerlee, P.2
Basanta, D.3
Fletcher, A.4
Maini, P.5
Anderson, A.6
-
15
-
-
0034696450
-
A dynamical model for the growth and size Distribution of multiple metastatic tumors
-
Iwata K, Kawasaki K, Shigesada N. A dynamical model for the growth and size Distribution of multiple metastatic tumors. J Theor Biol 2000;203:177-86.
-
(2000)
J Theor Biol
, vol.203
, pp. 177-186
-
-
Iwata, K.1
Kawasaki, K.2
Shigesada, N.3
-
16
-
-
80053610830
-
Modélisation du risque d'évolution métastatique chez les patients supposés avoir une maladie localisée
-
Barbolosi D, Verga F, You B, Benabdallah A, Hubert F, Mercier C, et al. Modélisation du risque d'évolution métastatique chez les patients supposés avoir une maladie localisée. Oncologie 2011;13:528-33.
-
(2011)
Oncologie
, vol.13
, pp. 528-533
-
-
Barbolosi, D.1
Verga, F.2
You, B.3
Benabdallah, A.4
Hubert, F.5
Mercier, C.6
-
17
-
-
84861880572
-
Strategies for the discovery and development of therapies for metastatic breast cancer
-
Eckhardt B, Francis P, Parker B, Anderson R. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov 2012;11:479-97.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 479-497
-
-
Eckhardt, B.1
Francis, P.2
Parker, B.3
Anderson, R.4
-
18
-
-
77950518404
-
Mouse models for breast cancer metastasis
-
Kim I, Baek S. Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 2010;394:443-7.
-
(2010)
Biochem Biophys Res Commun
, vol.394
, pp. 443-447
-
-
Kim, I.1
Baek, S.2
-
19
-
-
84866375606
-
A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy
-
Ribba B, Kaloshi G, Peyre M, Ricard D, Calvez V, Tod M, et al. A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. Clin Cancer Res 2012;18:5071-80.
-
(2012)
Clin Cancer Res
, vol.18
, pp. 5071-5080
-
-
Ribba, B.1
Kaloshi, G.2
Peyre, M.3
Ricard, D.4
Calvez, V.5
Tod, M.6
-
20
-
-
0033243858
-
Convergence of a stochastic approximation version of the EM algorithm
-
Deylon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann Stat 1999;25:94-128.
-
(1999)
Ann Stat
, vol.25
, pp. 94-128
-
-
Deylon, B.1
Lavielle, M.2
Moulines, E.3
-
22
-
-
84905259424
-
Parameter estimation in non-linear mixed effects models with SAEM algorithm: Extension from ODE to PDE
-
Grenier E, Louvet V, Vigneaux P. Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE. ESAIM Math Model Numer Anal 2014;48:1303-29.
-
(2014)
ESAIM Math Model Numer Anal
, vol.48
, pp. 1303-1329
-
-
Grenier, E.1
Louvet, V.2
Vigneaux, P.3
-
23
-
-
0023792617
-
UKCCCR guidelines for the welfare of animals in experimental neoplasia
-
Workman P, Balmain A, Hickman J, McNally N, Rohas A, Mitchison N, et al. UKCCCR guidelines for the welfare of animals in experimental neoplasia. Lan Anim 1988;22:195-201.
-
(1988)
Lan Anim
, vol.22
, pp. 195-201
-
-
Workman, P.1
Balmain, A.2
Hickman, J.3
McNally, N.4
Rohas, A.5
Mitchison, N.6
-
25
-
-
60349096256
-
Mathematical and numerical analysis for a model of growing metastatic tumors
-
Barbolosi D, Benabdallah A, Hubert F, Verga F. Mathematical and numerical analysis for a model of growing metastatic tumors. Math Biosci 2009;218:1-14.
-
(2009)
Math Biosci
, vol.218
, pp. 1-14
-
-
Barbolosi, D.1
Benabdallah, A.2
Hubert, F.3
Verga, F.4
-
28
-
-
84983720414
-
Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data
-
Tao Y, Ruan J, Yeh S, Lu X, Wang Y, Zhai W, et al. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc Natl Acad Sci USA 2011;108:12042-7.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 12042-12047
-
-
Tao, Y.1
Ruan, J.2
Yeh, S.3
Lu, X.4
Wang, Y.5
Zhai, W.6
-
29
-
-
9744274000
-
Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer
-
Mehta K, Fok J, Miller F, Koul D, Sahin A. Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 2004;10:8068-76.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 8068-8076
-
-
Mehta, K.1
Fok, J.2
Miller, F.3
Koul, D.4
Sahin, A.5
-
30
-
-
84873079275
-
Bioluminescence imaging correlates with tumor serum marker, organ weights, histology, and human DNA levels during treatment of orthotopic tumor xenografts with antibodies
-
Poeschinger T, Renner A, Weber T, Scheuer W. Bioluminescence imaging correlates with tumor serum marker, organ weights, histology, and human DNA levels during treatment of orthotopic tumor xenografts with antibodies. Mol Imaging Biol 2013;15:28-39.
-
(2013)
Mol Imaging Biol
, vol.15
, pp. 28-39
-
-
Poeschinger, T.1
Renner, A.2
Weber, T.3
Scheuer, W.4
-
31
-
-
33747467117
-
Outgrowth of human liver metastases after resection of the primary colorectal tumor: A shift in the balance between apoptosis and proliferation
-
Peeters C, Waal Rd, Wobbes T, Westphal J, Ruers T. Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer 2006;119:1249-53.
-
(2006)
Int J Cancer
, vol.119
, pp. 1249-1253
-
-
Peeters, C.1
Waal, Rd.2
Wobbes, T.3
Westphal, J.4
Ruers, T.5
-
33
-
-
84880378159
-
Circulating tumour cells: Insights into tumour heterogeneity
-
Hayes D, Paoletti C. Circulating tumour cells: insights into tumour heterogeneity. Intern Med 2013;274:137-43.
-
(2013)
Intern Med
, vol.274
, pp. 137-143
-
-
Hayes, D.1
Paoletti, C.2
-
34
-
-
84881299435
-
A mathematical model of tumour self-seeding reveals secondary metastatic deposits as drivers of primary tumour growth
-
Scott J, Basanta D, Anderson A, Gerlee P. A mathematical model of tumour self-seeding reveals secondary metastatic deposits as drivers of primary tumour growth. J R Soc Interface 2013;10.
-
(2013)
J R Soc Interface
, vol.10
-
-
Scott, J.1
Basanta, D.2
Anderson, A.3
Gerlee, P.4
-
35
-
-
84896379970
-
Mathematical models for translational and clinical oncology
-
Gallasch R, Efremova M, Charoentong P, Hackl H, Trajanoski Z. Mathematical models for translational and clinical oncology. J Clin Bioinforma 2013;7.
-
(2013)
J Clin Bioinforma
, vol.7
-
-
Gallasch, R.1
Efremova, M.2
Charoentong, P.3
Hackl, H.4
Trajanoski, Z.5
-
37
-
-
84855933775
-
Mathematical and numerical analysis of a model for antiangiogenic therapy in metastatic cancers
-
Benzekry S. Mathematical and numerical analysis of a model for antiangiogenic therapy in metastatic cancers. ESAIM Math Model Numer Anal 2012;46:207-37.
-
(2012)
ESAIM Math Model Numer Anal
, vol.46
, pp. 207-237
-
-
Benzekry, S.1
|