-
1
-
-
0030771347
-
QSAR and 3D QSAR in drug design. Part 1: Methodology
-
Kubinyi H: QSAR and 3D QSAR in drug design. Part 1: methodology. Drug Discov Today 1997, 2:457-467.
-
(1997)
Drug Discov Today
, vol.2
, pp. 457-467
-
-
Kubinyi, H.1
-
2
-
-
0037841526
-
Cross-validation as the objective function of variable selection
-
Baumann K: Cross-validation as the objective function of variable selection. Trends Anal Chem 2003, 22:395-406.
-
(2003)
Trends Anal Chem
, vol.22
, pp. 395-406
-
-
Baumann, K.1
-
5
-
-
0002128914
-
Data Analysis, Including Statistics
-
Edited by Gardner L, Eliot A. MA, USA: Springer: Addison-Wesley, Reading
-
Mosteller F, Turkey J: Data Analysis, Including Statistics. In The Handbook of Social Psychology. 2nd edition. Edited by Gardner L, Eliot A. MA, USA: Springer: Addison-Wesley, Reading; 1968:109-112.
-
(1968)
The Handbook of Social Psychology. 2nd Edition
, pp. 109-112
-
-
Mosteller, F.1
Turkey, J.2
-
6
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone M: Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B Methodol 1974, 36:111-147.
-
(1974)
J R Stat Soc Ser B Methodol
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
7
-
-
84985627306
-
On selecting variables and assessing their performance in linear discriminant analysis
-
Ganeshanandam S, Krzanowski WJ: On selecting variables and assessing their performance in linear discriminant analysis. Aust J Stat 1989, 31:433-447.
-
(1989)
Aust J Stat
, vol.31
, pp. 433-447
-
-
Ganeshanandam, S.1
Krzanowski, W.J.2
-
8
-
-
0043228681
-
On the use of cross-validation to assess performance in multivariate prediction
-
Jonathan P, Krzanowski WJ, McCarthy WV: On the use of cross-validation to assess performance in multivariate prediction. Stat Comput 2000, 10:209-229.
-
(2000)
Stat Comput
, vol.10
, pp. 209-229
-
-
Jonathan, P.1
Krzanowski, W.J.2
McCarthy, W.V.3
-
9
-
-
0037076322
-
Selection bias in gene extraction on the basis of microarray gene-expression data
-
Ambroise C, McLachlan GJ: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A 2002, 99:6562-6566.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 6562-6566
-
-
Ambroise, C.1
McLachlan, G.J.2
-
10
-
-
28644442413
-
External cross-validation for unbiased evaluation of protein family detectors: Application to allergens
-
Soeria-Atmadja D, Wallman M, Björklund AK, Isaksson A, Hammerling U, Gustafsson MG: External cross-validation for unbiased evaluation of protein family detectors: application to allergens. Proteins 2005, 61:918-925.
-
(2005)
Proteins
, vol.61
, pp. 918-925
-
-
Soeria-Atmadja, D.1
Wallman, M.2
Björklund, A.K.3
Isaksson, A.4
Hammerling, U.5
Gustafsson, M.G.6
-
11
-
-
79954990666
-
Introduction to machine learning for brain imaging
-
Lemm S, Blankertz B, Dickhaus T, Müller KR: Introduction to machine learning for brain imaging. Neuroimage 2011, 56:387-399.
-
(2011)
Neuroimage
, vol.56
, pp. 387-399
-
-
Lemm, S.1
Blankertz, B.2
Dickhaus, T.3
Müller, K.R.4
-
12
-
-
33644860703
-
Bias in error estimation when using cross-validation for model selection
-
Varma S, Simon R: Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 2006, 7:91.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 91
-
-
Varma, S.1
Simon, R.2
-
13
-
-
84874397060
-
Genetic variants and their interactions in disease risk prediction - Machine learning and network perspectives
-
Okser S, Pahikkala T, Aittokallio T: Genetic variants and their interactions in disease risk prediction - machine learning and network perspectives. BioData Min 2013, 6:5.
-
(2013)
BioData Min
, vol.6
, pp. 5
-
-
Okser, S.1
Pahikkala, T.2
Aittokallio, T.3
-
15
-
-
2942704287
-
Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm
-
Wegner JK, Fröhlich H, Zell A: Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm. J Chem Inf Comput Sci 2004, 44:921-930.
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 921-930
-
-
Wegner, J.K.1
Fröhlich, H.2
Zell, A.3
-
16
-
-
33750724182
-
Reducing over-optimism in variable selection by cross-model validation
-
Anderssen E, Dyrstad K, Westad F, Martens H: Reducing over-optimism in variable selection by cross-model validation. Chemom Intell Lab Syst 2006, 84:69-74.
-
(2006)
Chemom Intell Lab Syst
, vol.84
, pp. 69-74
-
-
Anderssen, E.1
Dyrstad, K.2
Westad, F.3
Martens, H.4
-
17
-
-
51749125994
-
Cross model validation and optimisation of bilinear regression models
-
Gidskehaug L, Anderssen E, Alsberg B: Cross model validation and optimisation of bilinear regression models. Chemom Intell Lab Syst 2008, 93:1-10.
-
(2008)
Chemom Intell Lab Syst
, vol.93
, pp. 1-10
-
-
Gidskehaug, L.1
Anderssen, E.2
Alsberg, B.3
-
18
-
-
84899084283
-
Cross-validation pitfalls when selecting and assessing regression and classification models
-
Krstajic D, Buturovic LJ, Leahy DE, Thomas S: Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform 2014, 6:1-15.
-
(2014)
J Cheminform
, vol.6
, pp. 1-15
-
-
Krstajic, D.1
Buturovic, L.J.2
Leahy, D.E.3
Thomas, S.4
-
19
-
-
54249125512
-
Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection
-
Tetko IV, Sushko I, Pandey AK, Zhu H, Tropsha A, Papa E, Öberg T, Todeschini R, Fourches D, Varnek A: Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection. J Chem Inf Model 2008, 48:1733-1746.
-
(2008)
J Chem Inf Model
, vol.48
, pp. 1733-1746
-
-
Tetko, I.V.1
Sushko, I.2
Pandey, A.K.3
Zhu, H.4
Tropsha, A.5
Papa, E.6
Öberg, T.7
Todeschini, R.8
Fourches, D.9
Varnek, A.10
-
20
-
-
84879797130
-
A large-scale empirical evaluation of cross-validation and external test set validation in (Q)SAR
-
Gütlein M, Helma C, Karwath A, Kramer S: A large-scale empirical evaluation of cross-validation and external test set validation in (Q)SAR. Mol Inform 2013, 32:516-528.
-
(2013)
Mol Inform
, vol.32
, pp. 516-528
-
-
Gütlein, M.1
Helma, C.2
Karwath, A.3
Kramer, S.4
-
21
-
-
0001935527
-
An introduction to model selection
-
Zucchini W: An introduction to model selection. J Math Psychol 2000, 44:41-61.
-
(2000)
J Math Psychol
, vol.44
, pp. 41-61
-
-
Zucchini, W.1
-
22
-
-
33846240326
-
Statistical strategies for avoiding false discoveries in metabolomics and related experiments
-
Broadhurst DI, Kell DB: Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006, 2:171-196.
-
(2006)
Metabolomics
, vol.2
, pp. 171-196
-
-
Broadhurst, D.I.1
Kell, D.B.2
-
23
-
-
39949083755
-
Cross-validation of component models: A critical look at current methods
-
Bro R, Kjeldahl K, Smilde AK, Kiers HAL: Cross-validation of component models: a critical look at current methods. Anal Bioanal Chem 2008, 390:1241-1251.
-
(2008)
Anal Bioanal Chem
, vol.390
, pp. 1241-1251
-
-
Bro, R.1
Kjeldahl, K.2
Smilde, A.K.3
Kiers, H.A.L.4
-
24
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods
-
Reunanen J: Overfitting in making comparisons between variable selection methods. J Mach Learn Res 2003, 3:1371-1382.
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
25
-
-
1642380461
-
The problem of overfitting
-
Hawkins DM: The problem of overfitting. J Chem Inf Comput Sci 2004, 44:1-12.
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1-12
-
-
Hawkins, D.M.1
-
26
-
-
77956907243
-
On over-fitting in model selection and subsequent selection bias in performance evaluation
-
Cawley GC, Talbot NLC: On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 2010, 11:2079-2107.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 2079-2107
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
27
-
-
28444497469
-
Chance correlation in variable subset regression: Influence of the objective function, the selection mechanism, and ensemble averaging
-
Baumann K: Chance correlation in variable subset regression: Influence of the objective function, the selection mechanism, and ensemble averaging. QSAR Comb Sci 2005, 24:1033-1046.
-
(2005)
QSAR Comb Sci
, vol.24
, pp. 1033-1046
-
-
Baumann, K.1
-
28
-
-
20844448884
-
Validation tools for variable subset regression
-
Baumann K, Stiefl N: Validation tools for variable subset regression. J Comput Aided Mol Des 2004, 18:549-562.
-
(2004)
J Comput Aided Mol des
, vol.18
, pp. 549-562
-
-
Baumann, K.1
Stiefl, N.2
-
30
-
-
1242296549
-
Model selection in ecology and evolution
-
Johnson JB, Omland KS: Model selection in ecology and evolution. Trends Ecol Evol 2004, 19:101-108.
-
(2004)
Trends Ecol Evol
, vol.19
, pp. 101-108
-
-
Johnson, J.B.1
Omland, K.S.2
-
32
-
-
80053295024
-
Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient
-
Chirico N, Gramatica P: Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 2011, 51:2320-2335.
-
(2011)
J Chem Inf Model
, vol.51
, pp. 2320-2335
-
-
Chirico, N.1
Gramatica, P.2
-
33
-
-
34250628103
-
Principles of QSAR models validation: Internal and external
-
Gramatica P: Principles of QSAR models validation: internal and external. QSAR Comb Sci 2007, 26:694-701.
-
(2007)
QSAR Comb Sci
, vol.26
, pp. 694-701
-
-
Gramatica, P.1
-
34
-
-
70450181710
-
How to recognize and workaround pitfalls in QSAR studies: A critical review
-
Scior T, Medina-Franco JL, Do Q-T, Martínez-Mayorga K, Yunes Rojas JA, Bernard P: How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem 2009, 16:4297-4313.
-
(2009)
Curr Med Chem
, vol.16
, pp. 4297-4313
-
-
Scior, T.1
Medina-Franco, J.L.2
Do, Q.-T.3
Martínez-Mayorga, K.4
Yunes Rojas, J.A.5
Bernard, P.6
-
35
-
-
18344363227
-
The better predictive model: High q2 for the training set or low root mean square error of prediction for the test set?
-
Aptula AO, Jeliazkova NG, Schultz TW, Cronin MTD: The better predictive model: High q2 for the training set or low root mean square error of prediction for the test set? QSAR Comb Sci 2005, 24:385-396.
-
(2005)
QSAR Comb Sci
, vol.24
, pp. 385-396
-
-
Aptula, A.O.1
Jeliazkova, N.G.2
Schultz, T.W.3
Cronin, M.T.D.4
-
36
-
-
0038724207
-
The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models
-
Tropsha A, Gramatica P, Gombar VK: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 2003, 22:69-77.
-
(2003)
QSAR Comb Sci
, vol.22
, pp. 69-77
-
-
Tropsha, A.1
Gramatica, P.2
Gombar, V.K.3
-
37
-
-
0033574245
-
Assessing the generalizability of prognostic information
-
Justice AC, Covinsky KE, Berlin JA: Assessing the generalizability of prognostic information. Ann Intern Med 1999, 130:515-524.
-
(1999)
Ann Intern Med
, vol.130
, pp. 515-524
-
-
Justice, A.C.1
Covinsky, K.E.2
Berlin, J.A.3
-
40
-
-
0032801090
-
Estimating the uncertainty in estimates of root mean square error of prediction: Application to determining the size of an adequate test set in multivariate calibration
-
Faber N, Klaas M: Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration. Chemom Intell Lab Syst 1999, 49:79-89.
-
(1999)
Chemom Intell Lab Syst
, vol.49
, pp. 79-89
-
-
Faber, N.1
Klaas, M.2
-
41
-
-
33947227575
-
Prediction error and its estimation for subset-selected models
-
Roecker EB: Prediction error and its estimation for subset-selected models. Technometrics 1991, 33:459-468.
-
(1991)
Technometrics
, vol.33
, pp. 459-468
-
-
Roecker, E.B.1
-
42
-
-
77951066659
-
Determinstic fallacies and model validation
-
Hawkins DM, Kraker JJ: Determinstic fallacies and model validation. J Chem Inf Model 2010, 24:188-193.
-
(2010)
J Chem Inf Model
, vol.24
, pp. 188-193
-
-
Hawkins, D.M.1
Kraker, J.J.2
-
44
-
-
52949118135
-
The C1C2: A framework for simultaneous model selection and assessment
-
Eklund M, Spjuth O, Wikberg JE: The C1C2: a framework for simultaneous model selection and assessment. BMC Bioinformatics 2008, 9:360-373.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 360-373
-
-
Eklund, M.1
Spjuth, O.2
Wikberg, J.E.3
-
45
-
-
0035478854
-
Random forests
-
Breiman L: Random forests. Mach Learn 2001, 45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
46
-
-
0036062152
-
A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part I. Search algorithm, theory and simulations
-
Baumann K, Albert H, von Korff M: A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part I. Search algorithm, theory and simulations. J Chemom 2002, 16:339-350.
-
(2002)
J Chemom
, vol.16
, pp. 339-350
-
-
Baumann, K.1
Albert, H.2
Von Korff, M.3
-
47
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
Arlot S, Celisse A: A survey of cross-validation procedures for model selection. Stat Surv 2010, 4:40-79.
-
(2010)
Stat Surv
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
48
-
-
0000131403
-
Cross-validation methods
-
Browne M: Cross-validation methods. J Math Psychol 2000, 44:108-132.
-
(2000)
J Math Psychol
, vol.44
, pp. 108-132
-
-
Browne, M.1
-
49
-
-
21144474350
-
Linear model selection by cross-validation
-
Shao J: Linear model selection by cross-validation. J Am Stat Assoc 1993, 88:486-494.
-
(1993)
J Am Stat Assoc
, vol.88
, pp. 486-494
-
-
Shao, J.1
-
50
-
-
79952797057
-
Conceptual complexity and the bias/variance tradeoff
-
Briscoe E, Feldman J: Conceptual complexity and the bias/variance tradeoff. Cognition 2011, 118:2-16.
-
(2011)
Cognition
, vol.118
, pp. 2-16
-
-
Briscoe, E.1
Feldman, J.2
-
51
-
-
25444521952
-
Unbiased descriptor and parameter selection confirms the potential of proteochemometric modelling
-
Freyhult E, Prusis P, Lapinsh M, Wikberg JE, Moulton V, Gustafsson MG: Unbiased descriptor and parameter selection confirms the potential of proteochemometric modelling. BMC Bioinformatics 2005, 6:50-64.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 50-64
-
-
Freyhult, E.1
Prusis, P.2
Lapinsh, M.3
Wikberg, J.E.4
Moulton, V.5
Gustafsson, M.G.6
-
52
-
-
79952205470
-
Predictions of hot spot residues at protein-protein interfaces using support vector machines
-
Lise S, Buchan D, Pontil M, Jones DT: Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS ONE 2011, 6:e16774.
-
(2011)
PLoS ONE
, vol.6
, pp. e16774
-
-
Lise, S.1
Buchan, D.2
Pontil, M.3
Jones, D.T.4
-
53
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis CF: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008, 9:319.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.F.3
-
54
-
-
33748702052
-
Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification
-
Asgharzadeh S, Pique-Regi R, Sposto R, Wang H, Yang Y, Shimada H, Matthay K, Buckley J, Ortega A, Seeger RC: Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 2006, 98:1193-1203.
-
(2006)
J Natl Cancer Inst
, vol.98
, pp. 1193-1203
-
-
Asgharzadeh, S.1
Pique-Regi, R.2
Sposto, R.3
Wang, H.4
Yang, Y.5
Shimada, H.6
Matthay, K.7
Buckley, J.8
Ortega, A.9
Seeger, R.C.10
-
55
-
-
18744414232
-
Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data
-
Lottaz C, Spang R: Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data. Bioinformatics 2005, 21:1971-1978.
-
(2005)
Bioinformatics
, vol.21
, pp. 1971-1978
-
-
Lottaz, C.1
Spang, R.2
-
56
-
-
34248532830
-
Assessing the statistical validity of proteomics based biomarkers
-
Smit S, van Breemen MJ, Hoefsloot HCJ, Smilde AK, Aerts JMFG, de Koster CG: Assessing the statistical validity of proteomics based biomarkers. Anal Chim Acta 2007, 592:210-217.
-
(2007)
Anal Chim Acta
, vol.592
, pp. 210-217
-
-
Smit, S.1
Van Breemen, M.J.2
Hoefsloot, H.C.J.3
Smilde, A.K.4
Jmfg, A.5
De Koster, C.G.6
-
57
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R: Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 1996, 58:267-288.
-
(1996)
J R Stat Soc Ser B Methodol
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
59
-
-
0001645890
-
Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology
-
Huuskonen J: Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Inf Comput Sci 2000, 40:773-777.
-
(2000)
J Chem Inf Comput Sci
, vol.40
, pp. 773-777
-
-
Huuskonen, J.1
-
60
-
-
79953005609
-
PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
-
Yap CW: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011, 32:1466-1474.
-
(2011)
J Comput Chem
, vol.32
, pp. 1466-1474
-
-
Yap, C.W.1
-
61
-
-
79961214573
-
High-dimensional regression and variable selection using CAR scores
-
Zuber V, Strimmer K: High-dimensional regression and variable selection using CAR scores. Stat Appl Genet Mol Biol 2010, 10:25.
-
(2010)
Stat Appl Genet Mol Biol
, vol.10
, pp. 25
-
-
Zuber, V.1
Strimmer, K.2
-
62
-
-
4043129529
-
Development of QSAR models to predict and interpret the biological activity of artemisinin analogues
-
Guha R, Jurs PC: Development of QSAR models to predict and interpret the biological activity of artemisinin analogues. J Chem Inf Comput Sci 2004, 44:1440-1449.
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1440-1449
-
-
Guha, R.1
Jurs, P.C.2
-
63
-
-
49449098592
-
Mold (2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics
-
Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L, Su Z, Perkins R, Tong W: Mold (2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 2008, 48:1337-1344.
-
(2008)
J Chem Inf Model
, vol.48
, pp. 1337-1344
-
-
Hong, H.1
Xie, Q.2
Ge, W.3
Qian, F.4
Fang, H.5
Shi, L.6
Su, Z.7
Perkins, R.8
Tong, W.9
-
66
-
-
29244477248
-
The phantom menace: Omitted variable bias in econometric research
-
Clarke K: The phantom menace: omitted variable bias in econometric research. Confl Manag Peace Sci 2005, 22:341-352.
-
(2005)
Confl Manag Peace Sci
, vol.22
, pp. 341-352
-
-
Clarke, K.1
-
67
-
-
0025078552
-
Calibration modeling by partial least-squares and principal component regression and its optimization using an improved leverage correction for prediction testing
-
Marbach R, Heise HM: Calibration modeling by partial least-squares and principal component regression and its optimization using an improved leverage correction for prediction testing. Chemom Intell Lab Syst 1990, 9:45-63.
-
(1990)
Chemom Intell Lab Syst
, vol.9
, pp. 45-63
-
-
Marbach, R.1
Heise, H.M.2
-
68
-
-
0031536511
-
Improvements on cross-validation: The.632+ bootstrap method
-
Efron B, Tibshirani R: Improvements on cross-validation: the .632+ bootstrap method. J Am Stat Assoc 1997, 92:548-560.
-
(1997)
J Am Stat Assoc
, vol.92
, pp. 548-560
-
-
Efron, B.1
Tibshirani, R.2
-
69
-
-
0000343716
-
Submodel selection and evaluation in regression. The X-random case
-
Breiman L, Spector P: Submodel selection and evaluation in regression. The X-random case. Int Stat Rev 1992, 60:291-319.
-
(1992)
Int Stat Rev
, vol.60
, pp. 291-319
-
-
Breiman, L.1
Spector, P.2
-
72
-
-
79961135005
-
-
Vienna, Austria: R Foundation for Statistical Computing
-
R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
-
(2011)
R: A Language and Environment for Statistical Computing
-
-
|