메뉴 건너뛰기




Volumn 141, Issue , 2014, Pages 15-25

Two algorithms for orthogonal nonnegative matrix factorization with application to clustering

Author keywords

Clustering; Document classification; Hyperspectral images; Nonnegative matrix factorization; Orthogonality

Indexed keywords

CONSTRAINED OPTIMIZATION; INFORMATION RETRIEVAL SYSTEMS; LAGRANGE MULTIPLIERS; SPECTROSCOPY;

EID: 84901628210     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.018     Document Type: Article
Times cited : (153)

References (21)
  • 1
    • 84861639358 scopus 로고    scopus 로고
    • Projection-like retractions on matrix manifolds
    • Absil P.-A., Malick JérÔme Projection-like retractions on matrix manifolds. SIAM J. Optim. 2012, 22:135-158.
    • (2012) SIAM J. Optim. , vol.22 , pp. 135-158
    • Absil, P.-A.1    Malick JérÔme2
  • 2
    • 4644274464 scopus 로고    scopus 로고
    • Generative model-based clustering of directional data, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-03), ACM Press
    • A. Banerjee, I. Dhillon, J. Ghosh, S. Sra,Generative model-based clustering of directional data, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-03), ACM Press, 2003, pp. 19-28.
    • (2003) , pp. 19-28
    • Banerjee, A.1    Dhillon, I.2    Ghosh, J.3    Sra, S.4
  • 4
    • 0013309537 scopus 로고    scopus 로고
    • Online Algorithms and Stochastic Approximations
    • Cambridge University Press, Cambridge, D. Saad (Ed.)
    • Bottou L. Online Algorithms and Stochastic Approximations. Online learning and neural networks 1998, Cambridge University Press, Cambridge. D. Saad (Ed.).
    • (1998) Online learning and neural networks
    • Bottou, L.1
  • 5
    • 36749071484 scopus 로고    scopus 로고
    • Svd based initialization. a head start for nonnegative matrix factorization
    • Boutsidis C., Gallopoulos E. Svd based initialization. a head start for nonnegative matrix factorization. Pattern Recognit. 2008, 41(4):1350-1362.
    • (2008) Pattern Recognit. , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 6
    • 84871551012 scopus 로고    scopus 로고
    • On tensors, sparsity, and nonnegative factorizations
    • Chi E.C., Kolda T.G. On tensors, sparsity, and nonnegative factorizations. SIAM J. Matrix Anal. Appl. 2012, 33:1272-1299.
    • (2012) SIAM J. Matrix Anal. Appl. , vol.33 , pp. 1272-1299
    • Chi, E.C.1    Kolda, T.G.2
  • 7
    • 56349098310 scopus 로고    scopus 로고
    • Algorithms for orthogonal nonnegative matrix factorization, in: Proceedings of the International Joint Conference on Neural Networks
    • S. Choi, Algorithms for orthogonal nonnegative matrix factorization, in: Proceedings of the International Joint Conference on Neural Networks, 2008, pp. 1828-1832.
    • (2008) , pp. 1828-1832
    • Choi, S.1
  • 8
    • 34548748711 scopus 로고    scopus 로고
    • Weighted graph cuts without eigenvectors. a multilevel approach
    • Dhillon I.S., Guan Y., Kulis B. Weighted graph cuts without eigenvectors. a multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(11):1944-1957.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.11 , pp. 1944-1957
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 9
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the Fifth SIAM Conference on Data Mining
    • C. Ding, X. He, On the equivalence of nonnegative matrix factorization and spectral clustering, in: Proceedings of the Fifth SIAM Conference on Data Mining, 2005, pp. 606-610.
    • (2005) , pp. 606-610
    • Ding, C.1    He, X.2
  • 10
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix tri-factorizations for clustering, in: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006
    • C. Ding, T. Li, W. Peng, H. Park,Orthogonal nonnegative matrix tri-factorizations for clustering, in: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006, 2006, pp. 126-135.
    • (2006) , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 11
    • 81755168313 scopus 로고    scopus 로고
    • Dimensionality reduction, classification, and spectral mixture analysis using nonnegative underapproximation
    • Gillis N., Plemmons R.J. Dimensionality reduction, classification, and spectral mixture analysis using nonnegative underapproximation. Opt. Eng. 2011, 50:027001.
    • (2011) Opt. Eng. , vol.50 , pp. 027001
    • Gillis, N.1    Plemmons, R.J.2
  • 12
    • 69949128613 scopus 로고    scopus 로고
    • L1 unmixing and its application to hyperspectral image enhancement, in: Proceedings of SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV
    • Z. Guo, T. Wittman, S. Osher, L1 unmixing and its application to hyperspectral image enhancement, in: Proceedings of SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, 2009.
    • (2009)
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 14
    • 84863012243 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization. an active-set-like method and comparisons
    • Kim J., Park H. Fast nonnegative matrix factorization. an active-set-like method and comparisons. SIAM J. Sci. Comput. 2011, 6:3261-3281.
    • (2011) SIAM J. Sci. Comput. , vol.6 , pp. 3261-3281
    • Kim, J.1    Park, H.2
  • 15
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Lin C.-J. Projected gradient methods for nonnegative matrix factorization. Neural Comput. 2007, 19:2756-2779.
    • (2007) Neural Comput. , vol.19 , pp. 2756-2779
    • Lin, C.-J.1
  • 17
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Pauca V.P., Piper J., Plemmons R.J. Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl. 2006, 406(1):29-47.
    • (2006) Linear Algebra Appl. , vol.406 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 18
    • 84887064763 scopus 로고    scopus 로고
    • Onp-mf: An orthogonal nonnegative matrix factorization algorithm with application to clustering, in: 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
    • F. Pompili, N. gillis, P.-A. Absil, F. Glineur, Onp-mf: An orthogonal nonnegative matrix factorization algorithm with application to clustering, in: 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2013.
    • (2013)
    • Pompili, F.1    Gillis, N.2    Absil, P.-A.3    Glineur, F.4
  • 19
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data, in: Proceedings of SPIE Conference on Imaging Spectrometry V
    • M. Winter, N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data, in: Proceedings of SPIE Conference on Imaging Spectrometry V, 1999.
    • (1999)
    • Winter, M.1
  • 20
    • 77951938107 scopus 로고    scopus 로고
    • Linear and nonlinear projective nonnegative matrix factorization
    • Yang Z., Oja E. Linear and nonlinear projective nonnegative matrix factorization. Trans. Neural Netw. 2010, 21:734-749.
    • (2010) Trans. Neural Netw. , vol.21 , pp. 734-749
    • Yang, Z.1    Oja, E.2
  • 21
    • 24944501423 scopus 로고    scopus 로고
    • Generative model-based document clustering. a comparative study
    • Zhong S., Ghosh J. Generative model-based document clustering. a comparative study. Knowl. Inf. Syst. 2005, 8(3):374-384.
    • (2005) Knowl. Inf. Syst. , vol.8 , Issue.3 , pp. 374-384
    • Zhong, S.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.