메뉴 건너뛰기




Volumn 22, Issue 6, 2014, Pages 1557-1568

Incremental fuzzy clustering with multiple medoids for large data

Author keywords

Fuzzy clustering; incremental clustering; large data; malware clustering; multiple medoids

Indexed keywords


EID: 84914147924     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2014.2298244     Document Type: Article
Times cited : (88)

References (36)
  • 3
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • A. Jain, "Data clustering: 50 years beyond k-means," Pattern Recognit. Lett., vol. 31, no. 8, pp. 651-666, 2010.
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.1
  • 4
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, "A survey of kernel and spectral methods for clustering," Pattern Recognit., vol. 41, no. 1, pp. 176-190, 2008.
    • (2008) Pattern Recognit. , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 5
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • May
    • R. Xu and D. Wunsch, "Survey of clustering algorithms," IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 645-678, May 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 7
    • 0003136237 scopus 로고
    • Efficient and effective clusteringmethods for spatial data mining
    • (ser. VLDB'94). San Francisco, CA, USA: Morgan Kaufmann. [Online]. Available:
    • R. T.Ng and J. Han. (1994). "Efficient and effective clusteringmethods for spatial data mining," in Proc. 20th Int. Conf. Very Large Data Bases (ser. VLDB'94). San Francisco, CA, USA: Morgan Kaufmann, pp. 144-155. [Online]. Available: http://dl.acm.org/citation.cfm?id=645920.672827
    • (1994) Proc. 20th Int. Conf. Very Large Data Bases , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 8
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Livny, "Birch: An efficient data clustering method for very large databases," in Proc. ACM Int. Conf. Special Interest Group Manag. Data, 1996, vol. 1, pp. 103-114.
    • (1996) Proc. ACM Int. Conf. Special Interest Group Manag. Data , vol.1 , pp. 103-114
    • Livny, T.1
  • 11
    • 68949146876 scopus 로고    scopus 로고
    • Incremental spectral clustering by efficiently updating the eigen-system
    • H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang, "Incremental spectral clustering by efficiently updating the eigen-system," Pattern Recognit., vol. 43, no. 1, pp. 113-127, 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 113-127
    • Ning, H.1    Xu, W.2    Chi, Y.3    Gong, Y.4    Huang, T.5
  • 14
    • 80053643343 scopus 로고    scopus 로고
    • FRBC: A fuzzy rule-based clustering algorithm
    • Oct
    • E. G. Mansoori, "FRBC: A fuzzy rule-based clustering algorithm," IEEE Trans. Fuzzy Syst., vol. 19, no. 5, pp. 960-971, Oct. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.5 , pp. 960-971
    • Mansoori, E.G.1
  • 17
    • 84859698282 scopus 로고    scopus 로고
    • A fuzzy approach for multitype relational data clustering
    • Jun
    • J.-P. Mei and L. Chen, "A fuzzy approach for multitype relational data clustering," IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 358-371, Jun. 2012.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.2 , pp. 358-371
    • Mei, J.-P.1    Chen, L.2
  • 18
    • 84873293546 scopus 로고    scopus 로고
    • Collaborative fuzzy clustering algorithms: Some refinements and design guidelines
    • L. F. Coletta, L. Vendramin, E. R. Hruschka, R. J. Campello, and W. Pedrycz, "Collaborative fuzzy clustering algorithms: Some refinements and design guidelines," IEEE Trans. Fuzzy Syst., vol. 20, no. 3, pp. 444-462, 2012.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.3 , pp. 444-462
    • Coletta, L.F.1    Vendramin, L.2    Hruschka, E.R.3    Campello, R.J.4    Pedrycz, W.5
  • 19
    • 54349092861 scopus 로고    scopus 로고
    • A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation
    • Oct
    • S. P. Chatzis and T. A. Varvarigou, "A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation," IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1351-1361, Oct. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.5 , pp. 1351-1361
    • Chatzis, S.P.1    Varvarigou, T.A.2
  • 20
    • 67149143365 scopus 로고    scopus 로고
    • Factor analysis latent subspace modeling and robust fuzzy clustering using formula formulatype
    • Jun
    • S. Chatzis and T. Varvarigou, "Factor analysis latent subspace modeling and robust fuzzy clustering using formula formulatype," IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 505-517, Jun. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.3 , pp. 505-517
    • Chatzis, S.1    Varvarigou, T.2
  • 21
    • 77951276538 scopus 로고    scopus 로고
    • Arobust fuzzy local information c-means clustering algorithm
    • May
    • S. Krinidis andV.Chatzis, "Arobust fuzzy local information c-means clustering algorithm," IEEE Trans. Image Process., vol. 19, no. 5, pp. 1328-1337, May 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.5 , pp. 1328-1337
    • Krinidis, S.1    Chatzis, V.2
  • 22
    • 84878732762 scopus 로고    scopus 로고
    • A mutually recurrent interval type-2 fuzzy neural network (MRIT2NFS) with self-evolving structure and parameters
    • Jun
    • Y.-Y. Lin, J.-Y. Chang, N. R. Pal, and C.-T. Lin, "A mutually recurrent interval type-2 fuzzy neural network (MRIT2NFS) with self-evolving structure and parameters," IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 492-509, Jun. 2013.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.3 , pp. 492-509
    • Lin, Y.-Y.1    Chang, J.-Y.2    Pal, N.R.3    Lin, C.-T.4
  • 23
    • 84881340565 scopus 로고    scopus 로고
    • Comparing fuzzy, probabilistic and possibilistic partitions using the earth mover's distance
    • Aug
    • D. Anderson, A. Zare, and S. Price, "Comparing fuzzy, probabilistic and possibilistic partitions using the earth mover's distance," IEEE Trans. Fuzzy Syst., vol. 21, no. 4, pp. 766-775, Aug. 2013.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.4 , pp. 766-775
    • Anderson, D.1    Zare, A.2    Price, S.3
  • 31
    • 0035416012 scopus 로고    scopus 로고
    • Low-complexity fuzzy relational clustering algorithms forweb mining
    • Aug
    • R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi, "Low-complexity fuzzy relational clustering algorithms forweb mining," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 595-607, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 595-607
    • Krishnapuram, R.1    Joshi, A.2    Nasraoui, O.3    Yi, L.4
  • 32
    • 75749127352 scopus 로고    scopus 로고
    • Fuzzy clusteringwith weighted medoids for relational data
    • J. Mei and L. Chen, "Fuzzy clusteringwith weighted medoids for relational data," Pattern Recognit., vol. 43, no. 5, pp. 1964-1974, 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.5 , pp. 1964-1974
    • Mei, J.1    Chen, L.2
  • 34
    • 79958743806 scopus 로고    scopus 로고
    • Automatic analysis of malware behavior using machine learning
    • K. Rieck, P. Trinius, C. Willems, and T. Holz, "Automatic analysis of malware behavior using machine learning," J. Comput. Security, vol. 19, no. 4, pp. 639-668, 2011.
    • (2011) J. Comput. Security , vol.19 , Issue.4 , pp. 639-668
    • Rieck, K.1    Trinius, P.2    Willems, C.3    Holz, T.4
  • 36
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh, "Cluster ensembles - A knowledge reuse framework for combining multiple partitions," J. Mach. Learn. Res., vol. 3, pp. 583-617, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.