메뉴 건너뛰기




Volumn 149, Issue PC, 2015, Pages 1337-1347

Uncertain canonical correlation analysis for multi-view feature extraction from uncertain data streams

Author keywords

Canonical correlation analysis (CCA); Feature extraction; Multi view dimensionality reduction; Multidimensional data streams; Uncertain data

Indexed keywords

CLASSIFICATION (OF INFORMATION); CORRELATION METHODS; DATA MINING; DIMENSIONALITY REDUCTION; EXTRACTION; FEATURE EXTRACTION;

EID: 84912143886     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.08.063     Document Type: Article
Times cited : (9)

References (56)
  • 2
    • 84872683902 scopus 로고    scopus 로고
    • A sliding window based algorithm for frequent closed itemset mining over data streams
    • Nori F., Deypir M., Sadreddini M.H. A sliding window based algorithm for frequent closed itemset mining over data streams. J. Syst. Softw. 2013, 86:615-623.
    • (2013) J. Syst. Softw. , vol.86 , pp. 615-623
    • Nori, F.1    Deypir, M.2    Sadreddini, M.H.3
  • 3
    • 31644433921 scopus 로고    scopus 로고
    • Maintaining sliding window skylines on data streams
    • Tao Y.F., Papadias D. Maintaining sliding window skylines on data streams. IEEE Trans. Knowl. Data Eng. 2006, 18:377-391.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , pp. 377-391
    • Tao, Y.F.1    Papadias, D.2
  • 5
    • 84857355203 scopus 로고    scopus 로고
    • A dynamic layout of sliding window for frequent itemset mining over data streams
    • Deypir M., Sadreddini M.H. A dynamic layout of sliding window for frequent itemset mining over data streams. J. Syst. Softw. 2012, 85:746-759.
    • (2012) J. Syst. Softw. , vol.85 , pp. 746-759
    • Deypir, M.1    Sadreddini, M.H.2
  • 7
    • 67651207502 scopus 로고    scopus 로고
    • Continuously monitoring top-k uncertain data streams: a probabilistic threshold method
    • Hua M., Pei J. Continuously monitoring top-k uncertain data streams: a probabilistic threshold method. Distrib. Parallel Databases 2009, 26:29-65.
    • (2009) Distrib. Parallel Databases , vol.26 , pp. 29-65
    • Hua, M.1    Pei, J.2
  • 8
    • 77950241855 scopus 로고    scopus 로고
    • Online timing correlation of streaming data with uncertain timestamps
    • Lee C.G., Mok A.K., Konana P. Online timing correlation of streaming data with uncertain timestamps. IEICE Trans. Inf. Syst. 2009, E92D:1260-1267.
    • (2009) IEICE Trans. Inf. Syst. , vol.E92D , pp. 1260-1267
    • Lee, C.G.1    Mok, A.K.2    Konana, P.3
  • 9
    • 84872682586 scopus 로고    scopus 로고
    • Constrained frequent pattern mining on univariate uncertain data
    • Liu Y.H., Wang C.S. Constrained frequent pattern mining on univariate uncertain data. J. Syst. Softw. 2013, 86:759-778.
    • (2013) J. Syst. Softw. , vol.86 , pp. 759-778
    • Liu, Y.H.1    Wang, C.S.2
  • 13
    • 84912110098 scopus 로고    scopus 로고
    • CCA-based algorithm for personalized privacy preservation in trajectory
    • Wen-ping L., Jing Y., Jian-pei Z. CCA-based algorithm for personalized privacy preservation in trajectory. J. Jilin Univ. (Eng. Technol Ed.) 2013, http://www.cnki.net/kcms/detail/22.1341.T.20131105.0900.029.html.
    • (2013) J. Jilin Univ. (Eng. Technol Ed.)
    • Wen-ping, L.1    Jing, Y.2    Jian-pei, Z.3
  • 15
    • 77953962823 scopus 로고    scopus 로고
    • MG-join: detecting phenomena and their correlation in high dimensional data streams
    • Kamel I., Al Aghbari Z., Awad T. MG-join: detecting phenomena and their correlation in high dimensional data streams. Distrib. Parallel Databases 2010, 28:67-92.
    • (2010) Distrib. Parallel Databases , vol.28 , pp. 67-92
    • Kamel, I.1    Al Aghbari, Z.2    Awad, T.3
  • 16
    • 9244222211 scopus 로고    scopus 로고
    • A neural network learning for adaptively extracting cross-correlation features between two high-dimensional data streams
    • Feng D.Z., Zhang X.D., Bao Z. A neural network learning for adaptively extracting cross-correlation features between two high-dimensional data streams. IEEE Trans. Neural Netw. 2004, 15:1541-1554.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , pp. 1541-1554
    • Feng, D.Z.1    Zhang, X.D.2    Bao, Z.3
  • 17
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: an overview with application to learning methods
    • Hardoon D.R., Szedmak S., Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 2004, 16:2639-2664.
    • (2004) Neural Comput. , vol.16 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 20
    • 34248630554 scopus 로고    scopus 로고
    • Variational Bayesian approach to canonical correlation analysis
    • Wang C. Variational Bayesian approach to canonical correlation analysis. IEEE Trans. Neural Netw. 2007, 18:905-910.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , pp. 905-910
    • Wang, C.1
  • 22
    • 77949487523 scopus 로고    scopus 로고
    • Super-resolution of human face image using canonical correlation analysis
    • Huang H., He H.T., Fan X., Zhang J.P. Super-resolution of human face image using canonical correlation analysis. Pattern Recogn. 2010, 43:2532-2543.
    • (2010) Pattern Recogn. , vol.43 , pp. 2532-2543
    • Huang, H.1    He, H.T.2    Fan, X.3    Zhang, J.P.4
  • 23
    • 84856594128 scopus 로고    scopus 로고
    • Incremental multi-linear discriminant analysis using canonical correlations for action recognition
    • Jia C.C., Wang S.J., Peng X.J., Pang W., Zhang C.Y., Zhou C.G., Yu Z.Z. Incremental multi-linear discriminant analysis using canonical correlations for action recognition. Neurocomputing 2012, 83:56-63.
    • (2012) Neurocomputing , vol.83 , pp. 56-63
    • Jia, C.C.1    Wang, S.J.2    Peng, X.J.3    Pang, W.4    Zhang, C.Y.5    Zhou, C.G.6    Yu, Z.Z.7
  • 25
    • 84885019435 scopus 로고    scopus 로고
    • Multivariate regression shrinkage and selection by canonical correlation analysis
    • An B.G., Guo J.H., Wang H.S. Multivariate regression shrinkage and selection by canonical correlation analysis. Comput. Stat. Data Anal. 2013, 62:93-107.
    • (2013) Comput. Stat. Data Anal. , vol.62 , pp. 93-107
    • An, B.G.1    Guo, J.H.2    Wang, H.S.3
  • 26
    • 84861817833 scopus 로고    scopus 로고
    • Prediction of Indian summer monsoon rainfall (ISMR) using canonical correlation analysis of global circulation model products
    • Singh A., Kulkarni M.A., Mohanty U.C., Kar S.C., Robertson A.W., Mishra G. Prediction of Indian summer monsoon rainfall (ISMR) using canonical correlation analysis of global circulation model products. Meteorol. Appl.s 2012, 19:179-188.
    • (2012) Meteorol. Appl.s , vol.19 , pp. 179-188
    • Singh, A.1    Kulkarni, M.A.2    Mohanty, U.C.3    Kar, S.C.4    Robertson, A.W.5    Mishra, G.6
  • 27
    • 33847186281 scopus 로고    scopus 로고
    • Statistical consistency of kernel canonical correlation analysis
    • Fukumizu K., Bach F.R., Gretton A. Statistical consistency of kernel canonical correlation analysis. J. Mach. Learn. Res. 2007, 8:361-383.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 361-383
    • Fukumizu, K.1    Bach, F.R.2    Gretton, A.3
  • 28
    • 33144473787 scopus 로고    scopus 로고
    • Facial expression recognition using kernel canonical correlation analysis (KCCA)
    • Zheng W.M., Zhou X.Y., Zou C.R., Zhao L. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. Neural Netw. 2006, 17:233-238.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 233-238
    • Zheng, W.M.1    Zhou, X.Y.2    Zou, C.R.3    Zhao, L.4
  • 29
    • 34548537654 scopus 로고    scopus 로고
    • Unsupervised analysis of fMRI data using kernel canonical correlation
    • Hardoon D.R., Mourao-Miranda J., Brammer M., Shawe-Taylor J. Unsupervised analysis of fMRI data using kernel canonical correlation. Neuroimage 2007, 37:1250-1259.
    • (2007) Neuroimage , vol.37 , pp. 1250-1259
    • Hardoon, D.R.1    Mourao-Miranda, J.2    Brammer, M.3    Shawe-Taylor, J.4
  • 30
    • 84862798157 scopus 로고    scopus 로고
    • Dimensionality reduction by Mixed Kernel Canonical Correlation Analysis
    • Zhu X.F., Huang Z., Shen H.T., Cheng J., Xu C.S. Dimensionality reduction by Mixed Kernel Canonical Correlation Analysis. Pattern Recogn. 2012, 45:3003-3016.
    • (2012) Pattern Recogn. , vol.45 , pp. 3003-3016
    • Zhu, X.F.1    Huang, Z.2    Shen, H.T.3    Cheng, J.4    Xu, C.S.5
  • 32
    • 36649031026 scopus 로고    scopus 로고
    • Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space
    • Shu C., Ouarda T. Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res. 2007, 43:33-45.
    • (2007) Water Resour. Res. , vol.43 , pp. 33-45
    • Shu, C.1    Ouarda, T.2
  • 33
    • 33847056269 scopus 로고    scopus 로고
    • Locality preserving CCA with applications to data visualization and pose estimation
    • Sun T.K., Chen S.C. Locality preserving CCA with applications to data visualization and pose estimation. Image Vis. Comput. 2007, 25:531-543.
    • (2007) Image Vis. Comput. , vol.25 , pp. 531-543
    • Sun, T.K.1    Chen, S.C.2
  • 34
    • 84879686265 scopus 로고    scopus 로고
    • A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction
    • Wang F.S., Zhang D.Q. A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction. Neural Process. Lett. 2013, 37:135-146.
    • (2013) Neural Process. Lett. , vol.37 , pp. 135-146
    • Wang, F.S.1    Zhang, D.Q.2
  • 35
    • 70349808992 scopus 로고    scopus 로고
    • Joint blind source separation by multiset canonical correlation analysis
    • Li Y.O., Adali T., Wang W., Calhoun V.D. Joint blind source separation by multiset canonical correlation analysis. IEEE Trans. Signal Process. 2009, 57:3918-3929.
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 3918-3929
    • Li, Y.O.1    Adali, T.2    Wang, W.3    Calhoun, V.D.4
  • 38
    • 78651283057 scopus 로고    scopus 로고
    • A novel multiset integrated canonical correlation analysis framework and its application in feature fusion
    • Yuan Y.H., Sun Q.S., Zhou Q.A., Xia D.S. A novel multiset integrated canonical correlation analysis framework and its application in feature fusion. Pattern Recogn. 2011, 44:1031-1040.
    • (2011) Pattern Recogn. , vol.44 , pp. 1031-1040
    • Yuan, Y.H.1    Sun, Q.S.2    Zhou, Q.A.3    Xia, D.S.4
  • 39
    • 79953045889 scopus 로고    scopus 로고
    • Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis
    • Deleus F., Van Hulle M.M. Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis. J. Neurosci. Methods 2011, 197:143-157.
    • (2011) J. Neurosci. Methods , vol.197 , pp. 143-157
    • Deleus, F.1    Van Hulle, M.M.2
  • 40
    • 84894572327 scopus 로고    scopus 로고
    • Ensemble canonical correlation analysis
    • Sakar C.O., Kursun O., Gurgen F. Ensemble canonical correlation analysis. Appl. Intell. 2014, 40:291-304.
    • (2014) Appl. Intell. , vol.40 , pp. 291-304
    • Sakar, C.O.1    Kursun, O.2    Gurgen, F.3
  • 41
    • 78649325096 scopus 로고    scopus 로고
    • Canonical Correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis
    • Sun L.A., Ji S.W., Ye J.P. Canonical Correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33:194-204.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 194-204
    • Sun, L.A.1    Ji, S.W.2    Ye, J.P.3
  • 42
    • 80054978321 scopus 로고    scopus 로고
    • Correlation-based incremental visual tracking
    • Kim M. Correlation-based incremental visual tracking. Pattern Recogn. 2012, 45:1050-1060.
    • (2012) Pattern Recogn. , vol.45 , pp. 1050-1060
    • Kim, M.1
  • 43
    • 79959713469 scopus 로고    scopus 로고
    • ApproxCCA: an approximate correlation analysis algorithm for multidimensional data streams
    • Wang Y.L., Zhang G.X., Qian J.B. ApproxCCA: an approximate correlation analysis algorithm for multidimensional data streams. Knowl.-Based Syst. 2011, 24:952-962.
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 952-962
    • Wang, Y.L.1    Zhang, G.X.2    Qian, J.B.3
  • 44
    • 84868645921 scopus 로고    scopus 로고
    • A tracking algorithm based on rank two modifications for canonical correlation analysis of multidimensional data streams
    • Yang J., Li W.-P., Zhang J.-P. A tracking algorithm based on rank two modifications for canonical correlation analysis of multidimensional data streams. Tien Tzu Hsueh Pao/Acta Electron. Sin. 2012, 40:1765-1774.
    • (2012) Tien Tzu Hsueh Pao/Acta Electron. Sin. , vol.40 , pp. 1765-1774
    • Yang, J.1    Li, W.-P.2    Zhang, J.-P.3
  • 45
    • 80455174581 scopus 로고    scopus 로고
    • Mining frequent patterns from univariate uncertain data
    • Liu Y.H. Mining frequent patterns from univariate uncertain data. Data Knowl. Eng. 2012, 71:47-68.
    • (2012) Data Knowl. Eng. , vol.71 , pp. 47-68
    • Liu, Y.H.1
  • 46
    • 32644442977 scopus 로고    scopus 로고
    • Exponential membership function in stochastic fuzzy goal programming
    • Iskander M.G. Exponential membership function in stochastic fuzzy goal programming. Appl. Math. Comput. 2006, 173:782-791.
    • (2006) Appl. Math. Comput. , vol.173 , pp. 782-791
    • Iskander, M.G.1
  • 47
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten D.M., Tibshirani R., Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2009, 10:515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 48
    • 25144439113 scopus 로고    scopus 로고
    • A new method of feature fusion and its application in image recognition
    • Sun Q.S., Zeng S.G., Liu Y., Heng P.A., Xia D.S. A new method of feature fusion and its application in image recognition. Pattern Recogn. 2005, 38:2437-2448.
    • (2005) Pattern Recogn. , vol.38 , pp. 2437-2448
    • Sun, Q.S.1    Zeng, S.G.2    Liu, Y.3    Heng, P.A.4    Xia, D.S.5
  • 50
    • 33749322733 scopus 로고    scopus 로고
    • Catch the moment: maintaining closed frequent itemsets over a data stream sliding window
    • Chi Y., Wang H.X., Yu P.S., Muntz R.R. Catch the moment: maintaining closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst. 2006, 10:265-294.
    • (2006) Knowl. Inf. Syst. , vol.10 , pp. 265-294
    • Chi, Y.1    Wang, H.X.2    Yu, P.S.3    Muntz, R.R.4
  • 51
    • 84877654354 scopus 로고    scopus 로고
    • Statistical distances and their applications to biophysical parameter estimation: information measures, M-Estimates, and minimum contrast methods
    • Leonenko G., Los S.O., North P.R.J. Statistical distances and their applications to biophysical parameter estimation: information measures, M-Estimates, and minimum contrast methods. Remote Sens. 2013, 5:1355-1388.
    • (2013) Remote Sens. , vol.5 , pp. 1355-1388
    • Leonenko, G.1    Los, S.O.2    North, P.R.J.3
  • 52
    • 84861101144 scopus 로고    scopus 로고
    • Transformed statistical distance measures and the Fisher information matrix
    • Klein A., Spreij P. Transformed statistical distance measures and the Fisher information matrix. Linear Algebra its Appl. 2012, 437:692-712.
    • (2012) Linear Algebra its Appl. , vol.437 , pp. 692-712
    • Klein, A.1    Spreij, P.2
  • 54
    • 0004255908 scopus 로고    scopus 로고
    • McGraw Hill Science, New York
    • Tom M.M. Machine Learning 1997, McGraw Hill Science, New York.
    • (1997) Machine Learning
    • Tom, M.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.