-
1
-
-
70350700681
-
New ensemble methods for evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda, New Ensemble Methods for Evolving Data Streams, Proc. 15th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '09), pp. 139-148, 2009.
-
(2009)
Proc. 15th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '09)
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavalda, R.5
-
2
-
-
79960103750
-
Learning model trees from evolving data streams
-
E. Ikonomovska, J. Gama, and S. Dzeroski, Learning Model Trees from Evolving Data Streams, Data Mining Knowledge Discovery, vol. 23, no. 1, pp. 128-168, 2011.
-
(2011)
Data Mining Knowledge Discovery
, vol.23
, Issue.1
, pp. 128-168
-
-
Ikonomovska, E.1
Gama, J.2
Dzeroski, S.3
-
3
-
-
70949095442
-
Architecture for development of adaptive on-line prediction models
-
P. Kadlec and B. Gabrys, Architecture for Development of Adaptive on-Line Prediction Models, Memetic Computing, vol. 1, no. 4, pp. 241-269, 2009.
-
(2009)
Memetic Computing
, vol.1
, Issue.4
, pp. 241-269
-
-
Kadlec, P.1
Gabrys, B.2
-
4
-
-
79955500697
-
Classification and novel class detection in concept-drifting data streams under time constraints
-
June
-
M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints, IEEE Trans. Knowledge and Data Eng., vol. 23, no. 6, pp. 859-874, June 2011.
-
(2011)
IEEE Trans. Knowledge and Data Eng.
, vol.23
, Issue.6
, pp. 859-874
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
5
-
-
37749050180
-
Dynamic weighted majority: An ensemble method for drifting concepts
-
Dec.
-
J. Kolter and M. Maloof, Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts, J. Machine Learning Research, vol. 8, pp. 2755-2790, Dec. 2007.
-
(2007)
J. Machine Learning Research
, vol.8
, pp. 2755-2790
-
-
Kolter, J.1
Maloof, M.2
-
6
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
May
-
L. Minku, A. White, and X. Yao, The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift, IEEE Trans. Knowledge and Data Eng., vol. 22, no. 5, pp. 730-742, May 2010.
-
(2010)
IEEE Trans. Knowledge and Data Eng.
, vol.22
, Issue.5
, pp. 730-742
-
-
Minku, L.1
White, A.2
Yao, X.3
-
7
-
-
84891786322
-
-
T. Breur Toms Ten Data Tips, http://www.xlntconsulting.com/newsletter- archive/data-preparation-december-2007.html, 2007.
-
(2007)
Toms Ten Data Tips
-
-
Breur, T.1
-
11
-
-
79951742062
-
Addressing concept-evolution in concept-drifting data streams
-
M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han, and B. Thuraisingham, Addressing Concept-Evolution in Concept-Drifting Data Streams, Proc. IEEE 10th Int'l Conf. Data Mining (ICDM '10), 2010.
-
(2010)
Proc. IEEE 10th Int'l Conf. Data Mining (ICDM '10)
-
-
Masud, M.1
Chen, Q.2
Khan, L.3
Aggarwal, C.4
Gao, J.5
Han, J.6
Thuraisingham, B.7
-
12
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat, Learning in the Presence of Concept Drift and Hidden Contexts, Machine Learning, vol. 23, pp. 69-101, 1996. (Pubitemid 126737384)
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
-
13
-
-
84857177477
-
Adaptive training set formation
-
Vilnius Univ.
-
I. -Zliobait- e, Adaptive Training Set Formation, PhD dissertation, Vilnius Univ., 2010.
-
(2010)
PhD Dissertation
-
-
Zliobaite, I.1
-
14
-
-
84883713774
-
Learning drifting concepts: Example selection versus example weighting
-
R. Klinkenberg, Learning Drifting Concepts: Example Selection versus Example Weighting, Intelligent Data Analysis, vol. 8, pp. 281-300, 2004.
-
(2004)
Intelligent Data Analysis
, vol.8
, pp. 281-300
-
-
Klinkenberg, R.1
-
15
-
-
35348907876
-
Dynamic integration of classifiers for handling concept drift
-
DOI 10.1016/j.inffus.2006.11.002, PII S1566253506001138, Applications of Ensemble Methods
-
A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, Dynamic Integration of Classifiers for Handling Concept Drift, Information Fusion, vol. 9, pp. 56-68, 2008. (Pubitemid 47589061)
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 56-68
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
Puuronen, S.4
-
16
-
-
78049367486
-
Classification and novel class detection of data streams in a dynamic feature space
-
M.M.Q. Chen, J. Gao, L. Khan, J. Han, and B. Thuraisingham, Classification and Novel Class Detection of Data Streams in a Dynamic Feature Space, Proc. European Conf. Machine Learning and Knowledge Discovery Databases: Part II (ECML PKDD '10), pp. 337-352, 2010.
-
(2010)
Proc. European Conf. Machine Learning and Knowledge Discovery Databases: Part II (ECML PKDD '10)
, pp. 337-352
-
-
Chen, M.M.Q.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
17
-
-
37849024302
-
Dynamic feature space and incremental feature selection for the classification of textual data streams
-
I. Katakis, G. Tsoumakas, and I. Vlahavas, Dynamic Feature Space and Incremental Feature Selection for the Classification of Textual Data Streams, Proc. ECML/PKDD '06 Int'l Workshop Knowledge Discovery from Data Streams, pp. 107-116, 2006.
-
(2006)
Proc. ECML/PKDD '06 Int'l Workshop Knowledge Discovery from Data Streams
, pp. 107-116
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
19
-
-
84988896527
-
Online optimization for variable selection in data streams
-
C. Anagnostopoulos, D. Tasoulis, D. Hand, and N. Adams, Online Optimization for Variable Selection in Data Streams, Proc. 18th European Conf. Artificial Intelligence (ECAI '08), pp. 132-136, 2008.
-
(2008)
Proc. 18th European Conf. Artificial Intelligence (ECAI '08)
, pp. 132-136
-
-
Anagnostopoulos, C.1
Tasoulis, D.2
Hand, D.3
Adams, N.4
-
20
-
-
56749155084
-
Deciding what to observe next: Adaptive variable selection for regression in multivariate data streams
-
C. Anagnostopoulos, N. Adams, and D. Hand, Deciding what to Observe Next: Adaptive Variable Selection for Regression in Multivariate Data Streams, Proc. ACM Symp. Applied Computing (SAC '08), pp. 961-965, 2008.
-
(2008)
Proc. ACM Symp. Applied Computing (SAC '08)
, pp. 961-965
-
-
Anagnostopoulos, C.1
Adams, N.2
Hand, D.3
|