메뉴 건너뛰기




Volumn 26, Issue 2, 2014, Pages 309-321

Adaptive preprocessing for streaming data

Author keywords

adaptive preprocessing; Concept drift; streaming data

Indexed keywords

ADAPTIVE PREDICTORS; ADAPTIVE PREPROCESSING; CONCEPT DRIFTS; PREDICTION ACCURACY; REFERENCE FRAMEWORKS; STREAMING DATA; SUPERVISED LEARNING APPROACHES; SYSTEMATIC RESEARCH;

EID: 84891754192     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2012.147     Document Type: Article
Times cited : (59)

References (21)
  • 3
    • 70949095442 scopus 로고    scopus 로고
    • Architecture for development of adaptive on-line prediction models
    • P. Kadlec and B. Gabrys, Architecture for Development of Adaptive on-Line Prediction Models, Memetic Computing, vol. 1, no. 4, pp. 241-269, 2009.
    • (2009) Memetic Computing , vol.1 , Issue.4 , pp. 241-269
    • Kadlec, P.1    Gabrys, B.2
  • 4
    • 79955500697 scopus 로고    scopus 로고
    • Classification and novel class detection in concept-drifting data streams under time constraints
    • June
    • M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints, IEEE Trans. Knowledge and Data Eng., vol. 23, no. 6, pp. 859-874, June 2011.
    • (2011) IEEE Trans. Knowledge and Data Eng. , vol.23 , Issue.6 , pp. 859-874
    • Masud, M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 5
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • Dec.
    • J. Kolter and M. Maloof, Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts, J. Machine Learning Research, vol. 8, pp. 2755-2790, Dec. 2007.
    • (2007) J. Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.1    Maloof, M.2
  • 6
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • May
    • L. Minku, A. White, and X. Yao, The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift, IEEE Trans. Knowledge and Data Eng., vol. 22, no. 5, pp. 730-742, May 2010.
    • (2010) IEEE Trans. Knowledge and Data Eng. , vol.22 , Issue.5 , pp. 730-742
    • Minku, L.1    White, A.2    Yao, X.3
  • 7
    • 84891786322 scopus 로고    scopus 로고
    • T. Breur Toms Ten Data Tips, http://www.xlntconsulting.com/newsletter- archive/data-preparation-december-2007.html, 2007.
    • (2007) Toms Ten Data Tips
    • Breur, T.1
  • 10
  • 12
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, Learning in the Presence of Concept Drift and Hidden Contexts, Machine Learning, vol. 23, pp. 69-101, 1996. (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1
  • 13
    • 84857177477 scopus 로고    scopus 로고
    • Adaptive training set formation
    • Vilnius Univ.
    • I. -Zliobait- e, Adaptive Training Set Formation, PhD dissertation, Vilnius Univ., 2010.
    • (2010) PhD Dissertation
    • Zliobaite, I.1
  • 14
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection versus example weighting
    • R. Klinkenberg, Learning Drifting Concepts: Example Selection versus Example Weighting, Intelligent Data Analysis, vol. 8, pp. 281-300, 2004.
    • (2004) Intelligent Data Analysis , vol.8 , pp. 281-300
    • Klinkenberg, R.1
  • 15
    • 35348907876 scopus 로고    scopus 로고
    • Dynamic integration of classifiers for handling concept drift
    • DOI 10.1016/j.inffus.2006.11.002, PII S1566253506001138, Applications of Ensemble Methods
    • A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, Dynamic Integration of Classifiers for Handling Concept Drift, Information Fusion, vol. 9, pp. 56-68, 2008. (Pubitemid 47589061)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 56-68
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3    Puuronen, S.4
  • 20
    • 56749155084 scopus 로고    scopus 로고
    • Deciding what to observe next: Adaptive variable selection for regression in multivariate data streams
    • C. Anagnostopoulos, N. Adams, and D. Hand, Deciding what to Observe Next: Adaptive Variable Selection for Regression in Multivariate Data Streams, Proc. ACM Symp. Applied Computing (SAC '08), pp. 961-965, 2008.
    • (2008) Proc. ACM Symp. Applied Computing (SAC '08) , pp. 961-965
    • Anagnostopoulos, C.1    Adams, N.2    Hand, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.