메뉴 건너뛰기




Volumn 85, Issue 3, 2012, Pages 746-759

A dynamic layout of sliding window for frequent itemset mining over data streams

Author keywords

Data stream; Data stream mining; Frequent patterns; Sliding window; Window adjustment

Indexed keywords

DATA STREAM; DATA STREAM MINING; DYNAMIC LAYOUT; EMPIRICAL RESULTS; FREQUENT ITEMSET MINING; FREQUENT PATTERNS; MAIN MEMORY; MEMORY EFFICIENT; MEMORY USAGE; MINING PROCESS; MULTIPLE ORDERS; NEW APPLICATIONS; PROCESSING POWER; RUNTIME AND MEMORY USAGE; SLIDING WINDOW; SLIDING WINDOW-BASED;

EID: 84857355203     PISSN: 01641212     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jss.2011.09.055     Document Type: Article
Times cited : (17)

References (34)
  • 6
    • 30344444271 scopus 로고    scopus 로고
    • estWin: Online data stream mining of recent frequent itemsets by sliding window method
    • DOI 10.1177/0165551505050785
    • J.H. Chang, and W.S. Lee estWin: online data stream mining of recent frequent itemsets by sliding window method Journal of Information Science 31 2 2005 76 90 (Pubitemid 43066256)
    • (2005) Journal of Information Science , vol.31 , Issue.2 , pp. 76-90
    • Chang, J.H.1    Lee, W.S.2
  • 7
    • 55849095876 scopus 로고    scopus 로고
    • Maintaining frequent closed itemsets over a sliding window
    • Y.K.J. Cheng, and W. Ng Maintaining frequent closed itemsets over a sliding window Journal of Intelligent Information Systems 31 3 2007 191 215
    • (2007) Journal of Intelligent Information Systems , vol.31 , Issue.3 , pp. 191-215
    • Cheng, Y.K.J.1    Ng, W.2
  • 8
    • 33749322733 scopus 로고    scopus 로고
    • Catch the moment: Maintaining closed frequent itemsets over a data stream sliding window
    • DOI 10.1007/s10115-006-0003-0
    • Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz Catch the moment: maintaining closed frequent itemsets over a data stream sliding window Knowledge and Information Systems 10 3 2006 265 294 (Pubitemid 44489997)
    • (2006) Knowledge and Information Systems , vol.10 , Issue.3 , pp. 265-294
    • Chi, Y.1    Wang, H.2    Yu, P.S.3    Muntz, R.R.4
  • 12
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • DOI 10.1023/B:DAMI.0000005258.31418.83
    • J. Han, J. Pei, Y. Yin, and R. Mao Mining frequent patterns without candidate generation: a frequent-pattern tree approach Data Mining and Knowledge Discovery 8 1 2004 53 87 (Pubitemid 39019971)
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 13
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: Current status and future directions
    • DOI 10.1007/s10618-006-0059-1, 10th Anniversary Issue
    • J. Han, H. Cheng, D. Xin, and X. Yan Frequent pattern mining: current status and future directions Data Mining and Knowledge Discovery 15 1 2007 55 86 (Pubitemid 47142811)
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.1 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3    Yan, X.4
  • 15
    • 84878048755 scopus 로고    scopus 로고
    • DSTree: A tree structure for the mining of frequent sets from data streams
    • C.K.-S. Leung, and Q.I. Khan DSTree: a tree structure for the mining of frequent sets from data streams Proc. ICDM 2006 928 932
    • (2006) Proc. ICDM , pp. 928-932
    • Leung, C.K.-S.1    Khan, Q.I.2
  • 16
    • 62849127337 scopus 로고    scopus 로고
    • Mining non-derivable frequent itemsets over data stream
    • H. Li, and H. Chen Mining non-derivable frequent itemsets over data stream Data & Knowledge Engineering 68 5 2009 481 498
    • (2009) Data & Knowledge Engineering , vol.68 , Issue.5 , pp. 481-498
    • Li, H.1    Chen, H.2
  • 17
    • 56349132360 scopus 로고    scopus 로고
    • Mining frequent itemsets over data streams using efficient window sliding techniques
    • H.-F. Li, and S.-Y. Lee Mining frequent itemsets over data streams using efficient window sliding techniques Expert Systems with Applications 36 2 2009 1466 1477
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 1466-1477
    • Li, H.-F.1    Lee, S.-Y.2
  • 21
    • 52649129706 scopus 로고    scopus 로고
    • Verifying and mining frequent patterns from large windows over data streams
    • B. Mozafari, H. Thakkar, and C. Zaniolo Verifying and mining frequent patterns from large windows over data streams Proc. Int. Conf. ICDE, 2008 2008 179 188
    • (2008) Proc. Int. Conf. ICDE, 2008 , pp. 179-188
    • Mozafari, B.1    Thakkar, H.2    Zaniolo, C.3
  • 24
    • 41849106846 scopus 로고    scopus 로고
    • Approximate mining of frequent patterns on streams
    • C. Silvestri, and S. Orlando Approximate mining of frequent patterns on streams Intelligent Data Analysis 11 1 2007 49 73
    • (2007) Intelligent Data Analysis , vol.11 , Issue.1 , pp. 49-73
    • Silvestri, C.1    Orlando, S.2
  • 25
    • 69549097483 scopus 로고    scopus 로고
    • Sliding window-based frequent pattern mining over data streams
    • S.K. Tanbeer, C.F. Ahmed, B.-S. Jeong, and Y.-K. Lee Sliding window-based frequent pattern mining over data streams Information Sciences 179 22 2009 3843 3865
    • (2009) Information Sciences , vol.179 , Issue.22 , pp. 3843-3865
    • Tanbeer, S.K.1    Ahmed, C.F.2    Jeong, B.-S.3    Lee, Y.-K.4
  • 26
    • 0002663969 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • H. Toivonen Sampling large databases for association rules Proc. 22nd Int. Conf. VLDB 1996 134 145
    • (1996) Proc. 22nd Int. Conf. VLDB , pp. 134-145
    • Toivonen, H.1
  • 27
    • 67349245432 scopus 로고    scopus 로고
    • Mining frequent itemsets in data streams using the weighted sliding window model
    • P.S.M. Tsai Mining frequent itemsets in data streams using the weighted sliding window model Expert Systems with Applications 36 9 2009 11617 11625
    • (2009) Expert Systems with Applications , vol.36 , Issue.9 , pp. 11617-11625
    • Tsai, P.S.M.1
  • 28
    • 70349312375 scopus 로고    scopus 로고
    • EstMax: Tracing maximal frequent item sets instantly over online transactional data streams
    • H.J. Woo, and W.S. Lee estMax: tracing maximal frequent item sets instantly over online transactional data streams IEEE Transactions on Knowledge and Data Engineering 21 10 2009 1418 1431
    • (2009) IEEE Transactions on Knowledge and Data Engineering , vol.21 , Issue.10 , pp. 1418-1431
    • Woo, H.J.1    Lee, W.S.2
  • 30
    • 33646140552 scopus 로고    scopus 로고
    • A false negative approach to mining frequent itemsets from high speed transactional data streams
    • J.X. Yu, Z. Chong, H. Lu, Z. Zhang, and A. Zhou A false negative approach to mining frequent itemsets from high speed transactional data streams Information Sciences 176 14 2006 1986 2015
    • (2006) Information Sciences , vol.176 , Issue.14 , pp. 1986-2015
    • Yu, J.X.1    Chong, Z.2    Lu, H.3    Zhang, Z.4    Zhou, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.