메뉴 건너뛰기




Volumn 37, Issue 2, 2013, Pages 135-146

A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction

Author keywords

Canonical correlation analysis; High dimensional classification; Locality preserving projection; Multi view dimensionality reduction

Indexed keywords

CANONICAL CORRELATION ANALYSIS; DIMENSIONALITY REDUCTION; HIGH DIMENSIONAL DATA; HIGH-DIMENSIONAL; INTRINSIC DATA STRUCTURE; LOCAL MANIFOLD STRUCTURE; LOCALITY PRESERVING PROJECTIONS; NEIGHBORHOOD INFORMATION;

EID: 84879686265     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-012-9238-9     Document Type: Article
Times cited : (55)

References (30)
  • 7
    • 0000107975 scopus 로고
    • Relation between two sets of variables
    • Hotelling H (1936) Relation between two sets of variables. Biometrica 28: 322-377
    • (1936) Biometrica , vol.28 , pp. 322-377
    • Hotelling, H.1
  • 9
    • 0036505017 scopus 로고    scopus 로고
    • Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data
    • 10.1109/83.988962
    • Nielsen AA (2002) Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans Image Process 11(3): 293-305
    • (2002) IEEE Trans Image Process , vol.11 , Issue.3 , pp. 293-305
    • Nielsen, A.A.1
  • 11
    • 25144439113 scopus 로고    scopus 로고
    • A new method of feature fusion and its application in image recognition
    • 10.1016/j.patcog.2004.12.013
    • Sun Q-S, Zeng S-G, Liu Y, Heng P-A, Xia D-S (2005) A new method of feature fusion and its application in image recognition. Pattern Recognit 38(12): 2437-2448
    • (2005) Pattern Recognit , vol.38 , Issue.12 , pp. 2437-2448
    • Sun, Q.-S.1    Zeng, S.-G.2    Liu, Y.3    Heng, P.-A.4    Xia, D.-S.5
  • 13
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • 1062.68134 10.1162/0899766042321814
    • Hardoon DR, Szedmák S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12): 2639-2664
    • (2004) Neural Comput , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmák, S.2    Shawe-Taylor, J.3
  • 14
    • 10144261309 scopus 로고    scopus 로고
    • Dimensionality reduction approach to multivariate prediction
    • 2133598 05374089 10.1016/j.csda.2003.11.021
    • Abraham B, Merola G (2005) Dimensionality reduction approach to multivariate prediction. Comput Stat Data Anal 48(1): 5-16
    • (2005) Comput Stat Data Anal , vol.48 , Issue.1 , pp. 5-16
    • Abraham, B.1    Merola, G.2
  • 15
    • 0034551784 scopus 로고    scopus 로고
    • Nonlinear canonical correlation analysis by neural networks
    • 10.1016/S0893-6080(00)00067-8
    • Hsieh WW (2000) Nonlinear canonical correlation analysis by neural networks. Neural Netw 13(10): 1095-1105
    • (2000) Neural Netw , vol.13 , Issue.10 , pp. 1095-1105
    • Hsieh, W.W.1
  • 17
    • 33847186281 scopus 로고    scopus 로고
    • Consistency of kernel canonical correlation analysis
    • 2320675 1222.62063
    • Fukumizu K, Bach F, Gretton A (2007) Consistency of kernel canonical correlation analysis. J Mach Learn Res 8: 361-383
    • (2007) J Mach Learn Res , vol.8 , pp. 361-383
    • Fukumizu, K.1    Bach, F.2    Gretton, A.3
  • 20
    • 0842300534 scopus 로고    scopus 로고
    • Clustering incomplete data using kernel-based fuzzy c-means algorithm
    • 10.1023/B:NEPL.0000011135.19145.1b
    • Zhang D-Q, Chen S-C (2003) Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural Process Lett 18(3): 155-162
    • (2003) Neural Process Lett , vol.18 , Issue.3 , pp. 155-162
    • Zhang, D.-Q.1    Chen, S.-C.2
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • 10.1126/science.290.5500.2323
    • Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290: 2510-2522
    • (2000) Science , vol.290 , pp. 2510-2522
    • Roweis, S.1    Saul, L.2
  • 27
    • 33847056269 scopus 로고    scopus 로고
    • Locality preserving CCA with applications to data visualization and pose estimation
    • 1142.65340 10.1016/j.imavis.2006.04.014
    • Sun T, Chen S (2007) Locality preserving CCA with applications to data visualization and pose estimation. Image Vision Comput 25(5): 531-543
    • (2007) Image Vision Comput , vol.25 , Issue.5 , pp. 531-543
    • Sun, T.1    Chen, S.2
  • 28
    • 12144258144 scopus 로고    scopus 로고
    • Subset based least squares subspace regression in RKHS
    • 10.1016/j.neucom.2004.04.013
    • Hoegaerts L, Suykens JAK, Vandewalle J, Moor BD (2005) Subset based least squares subspace regression in RKHS. Neurocomputing 63: 293-323
    • (2005) Neurocomputing , vol.63 , pp. 293-323
    • Hoegaerts, L.1    Suykens, J.A.K.2    Vandewalle, J.3    Moor, B.D.4
  • 29
    • 0038648412 scopus 로고    scopus 로고
    • Appearance models based on kernel canonical correlation analysis
    • 1035.68105 10.1016/S0031-3203(03)00058-X
    • Melzer T, Reiter M, Bischof H (2003) Appearance models based on kernel canonical correlation analysis. Pattern Recognit 36(9): 1961-1971
    • (2003) Pattern Recognit , vol.36 , Issue.9 , pp. 1961-1971
    • Melzer, T.1    Reiter, M.2    Bischof, H.3
  • 30
    • 79551510424 scopus 로고    scopus 로고
    • A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples
    • 1209.68499 10.1016/j.patcog.2010.12.011
    • Zhang J, Zhang D (2011) A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples. Pattern Recognit 44(6): 1162-1171
    • (2011) Pattern Recognit , vol.44 , Issue.6 , pp. 1162-1171
    • Zhang, J.1    Zhang, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.