메뉴 건너뛰기




Volumn 192, Issue 2, 2014, Pages 454-463

Establishment of a bilateral femoral large segmental bone defect mouse model potentially applicable to basic research in bone tissue engineering

Author keywords

Bilateral bone defect; Mesenchymal stem cells; Mouse model; Tissue engineering

Indexed keywords

CD31 ANTIGEN; TITANIUM; GREEN FLUORESCENT PROTEIN;

EID: 84912106510     PISSN: 00224804     EISSN: 10958673     Source Type: Journal    
DOI: 10.1016/j.jss.2014.05.037     Document Type: Article
Times cited : (28)

References (35)
  • 1
    • 78751686333 scopus 로고    scopus 로고
    • Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies
    • Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 2011;45:14.
    • (2011) Lab Anim , vol.45 , pp. 14
    • Gomes, P.S.1    Fernandes, M.H.2
  • 2
    • 77953634605 scopus 로고    scopus 로고
    • Long bone defect models for tissue engineering applications: Criteria for choice
    • Horner EA, Kirkham J, Wood D, et al. Long bone defect models for tissue engineering applications: criteria for choice. Tissue engineering. Part B, Reviews 2010;16:263.
    • (2010) Tissue Engineering. Part B, Reviews , vol.16 , pp. 263
    • Horner, E.A.1    Kirkham, J.2    Wood, D.3
  • 4
    • 21844474001 scopus 로고    scopus 로고
    • De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model
    • Bensaid W, Oudina K, Viateau V, et al. De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue engineering 2005;11:814.
    • (2005) Tissue Engineering , vol.11 , pp. 814
    • Bensaid, W.1    Oudina, K.2    Viateau, V.3
  • 6
    • 50349102268 scopus 로고    scopus 로고
    • Porous collagenapatite nanocomposite foams as bone regeneration scaffolds
    • Pek YS, Gao S, Arshad MS, Leck KJ, Ying JY. Porous collagenapatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 2008;29:4300.
    • (2008) Biomaterials , vol.29 , pp. 4300
    • Pek, Y.S.1    Gao, S.2    Arshad, M.S.3    Leck, K.J.4    Ying, J.Y.5
  • 9
    • 61449210913 scopus 로고    scopus 로고
    • A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow
    • Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature protocols 2009;4:102.
    • (2009) Nature Protocols , vol.4 , pp. 102
    • Soleimani, M.1    Nadri, S.2
  • 10
    • 77649244537 scopus 로고    scopus 로고
    • In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix
    • Liu G, Li Y, Sun J, et al. In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Tissue engineering. Part A 2010;16:971.
    • (2010) Tissue Engineering. Part A , vol.16 , pp. 971
    • Liu, G.1    Li, Y.2    Sun, J.3
  • 11
    • 52649103483 scopus 로고    scopus 로고
    • Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: An in vitro and in vivo study
    • Liu G, Sun J, Li Y, et al. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Calcified tissue international 2008;83:176.
    • (2008) Calcified Tissue International , vol.83 , pp. 176
    • Liu, G.1    Sun, J.2    Li, Y.3
  • 12
    • 10644267768 scopus 로고    scopus 로고
    • In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering
    • Mauney JR, Jaquiery C, Volloch V, Heberer M, Martin I, Kaplan DL. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 2005;26:3173.
    • (2005) Biomaterials , vol.26 , pp. 3173
    • Mauney, J.R.1    Jaquiery, C.2    Volloch, V.3    Heberer, M.4    Martin, I.5    Kaplan, D.L.6
  • 13
    • 70350732729 scopus 로고    scopus 로고
    • The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model
    • Tortelli F, Tasso R, Loiacono F, Cancedda R. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials 2010;31:242.
    • (2010) Biomaterials , vol.31 , pp. 242
    • Tortelli, F.1    Tasso, R.2    Loiacono, F.3    Cancedda, R.4
  • 14
    • 84920994969 scopus 로고    scopus 로고
    • Implantation of osteogenic differentiated donor mesenchymal stem cells causes recruitment of host cells
    • Epub ahead of print
    • Zhou Y, Fan W, Prasadam I, Crawford R, Xiao Y. Implantation of osteogenic differentiated donor mesenchymal stem cells causes recruitment of host cells. Journal of tissue engineering and regenerative medicine; 2012. http://dx.doi.org/10.1002/term.1619 [Epub ahead of print].
    • (2012) Journal of Tissue Engineering and Regenerative Medicine
    • Zhou, Y.1    Fan, W.2    Prasadam, I.3    Crawford, R.4    Xiao, Y.5
  • 15
    • 0347123662 scopus 로고    scopus 로고
    • Moral imagination in tissue engineering research on animal models
    • Nordgren A. Moral imagination in tissue engineering research on animal models. Biomaterials 2004;25:1723.
    • (2004) Biomaterials , vol.25 , pp. 1723
    • Nordgren, A.1
  • 16
    • 77049105230 scopus 로고    scopus 로고
    • Controlled dynamization to enhance reconstruction capacity of tissue-engineered bone in healing critically sized bone defects: An in vivo study in goats
    • Hou T, Li Q, Luo F, et al. Controlled dynamization to enhance reconstruction capacity of tissue-engineered bone in healing critically sized bone defects: an in vivo study in goats. Tissue engineering. Part A 2010;16:201.
    • (2010) Tissue Engineering. Part A , vol.16 , pp. 201
    • Hou, T.1    Li, Q.2    Luo, F.3
  • 17
    • 17144469316 scopus 로고    scopus 로고
    • Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones
    • Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. Journal of biomedical materials research 2000;49:328.
    • (2000) Journal of Biomedical Materials Research , vol.49 , pp. 328
    • Kon, E.1    Muraglia, A.2    Corsi, A.3
  • 19
    • 1942500920 scopus 로고    scopus 로고
    • In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model
    • Stubbs D, Deakin M, Chapman-Sheath P, et al. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 2004;25:5037.
    • (2004) Biomaterials , vol.25 , pp. 5037
    • Stubbs, D.1    Deakin, M.2    Chapman-Sheath, P.3
  • 21
    • 0022516213 scopus 로고
    • The critical size defect as an experimental model for craniomandibulofacial nonunions
    • Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical orthopaedics and related research 1986;205:299.
    • (1986) Clinical Orthopaedics and Related Research , vol.205 , pp. 299
    • Schmitz, J.P.1    Hollinger, J.O.2
  • 22
    • 60849106318 scopus 로고    scopus 로고
    • The challenge of establishing preclinicalmodels for segmental bone defect research
    • Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinicalmodels for segmental bone defect research. Biomaterials 2009;30:2149.
    • (2009) Biomaterials , vol.30 , pp. 2149
    • Reichert, J.C.1    Saifzadeh, S.2    Wullschleger, M.E.3
  • 24
    • 42149130926 scopus 로고    scopus 로고
    • Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: A biomechanical, veterinary and trauma surgical perspective
    • Drosse I, Volkmer E, Seitz S, et al. Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: a biomechanical, veterinary and trauma surgical perspective. Tissue engineering. Part C, Methods 2008;14:79.
    • (2008) Tissue Engineering. Part C, Methods , vol.14 , pp. 79
    • Drosse, I.1    Volkmer, E.2    Seitz, S.3
  • 25
    • 84884211799 scopus 로고    scopus 로고
    • Establishment of a femoral critical-size bone defect model in immunodeficient mice
    • Zwingenberger S, Niederlohmann E, Vater C, et al. Establishment of a femoral critical-size bone defect model in immunodeficient mice. The Journal of surgical research 2013;181:e7.
    • (2013) The Journal of Surgical Research , vol.181 , pp. e7
    • Zwingenberger, S.1    Niederlohmann, E.2    Vater, C.3
  • 26
    • 84862925308 scopus 로고    scopus 로고
    • Repair of large segmental bone defects using bone marrow stromal cells with demineralized bone matrix
    • Xu JZ, Qin H, Wang XQ, et al. Repair of large segmental bone defects using bone marrow stromal cells with demineralized bone matrix. Orthopaedic surgery 2009;1:34.
    • (2009) Orthopaedic Surgery , vol.1 , pp. 34
    • Xu, J.Z.1    Qin, H.2    Wang, X.Q.3
  • 27
    • 0035253558 scopus 로고    scopus 로고
    • Repair of large bone defects with the use of autologous bone marrow stromal cells
    • Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. The New England journal of medicine 2001;344:385.
    • (2001) The New England Journal of Medicine , vol.344 , pp. 385
    • Quarto, R.1    Mastrogiacomo, M.2    Cancedda, R.3
  • 28
    • 34548268499 scopus 로고    scopus 로고
    • Refining animal models in fracture research: Seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use
    • Auer JA, Goodship A, Arnoczky S, et al. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC musculoskeletal disorders 2007;8:72.
    • (2007) BMC Musculoskeletal Disorders , vol.8 , pp. 72
    • Auer, J.A.1    Goodship, A.2    Arnoczky, S.3
  • 29
    • 84880289178 scopus 로고    scopus 로고
    • A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system
    • Liu K, Li D, Huang X, et al. A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system. The Journal of surgical research 2013;183:493.
    • (2013) The Journal of Surgical Research , vol.183 , pp. 493
    • Liu, K.1    Li, D.2    Huang, X.3
  • 30
    • 1642373909 scopus 로고    scopus 로고
    • Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms
    • Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation research 2004;94:678.
    • (2004) Circulation Research , vol.94 , pp. 678
    • Kinnaird, T.1    Stabile, E.2    Burnett, M.S.3
  • 32
    • 74449083750 scopus 로고    scopus 로고
    • The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissueengineered bone in a murine model
    • Tasso R, Fais F, Reverberi D, Tortelli F, Cancedda R. The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissueengineered bone in a murine model. Biomaterials 2010;31:2121.
    • (2010) Biomaterials , vol.31 , pp. 2121
    • Tasso, R.1    Fais, F.2    Reverberi, D.3    Tortelli, F.4    Cancedda, R.5
  • 33
    • 0035034774 scopus 로고    scopus 로고
    • A metaphyseal defect model of the femur for studies of murine bone healing
    • Uusitalo H, Rantakokko J, Ahonen M, et al. A metaphyseal defect model of the femur for studies of murine bone healing. Bone 2001;28:423.
    • (2001) Bone , vol.28 , pp. 423
    • Uusitalo, H.1    Rantakokko, J.2    Ahonen, M.3
  • 34
    • 39149137857 scopus 로고    scopus 로고
    • Stem cell trafficking in tissue development, growth, and disease
    • Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell 2008;132:612.
    • (2008) Cell , vol.132 , pp. 612
    • Laird, D.J.1    Von Andrian, U.H.2    Wagers, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.