-
1
-
-
33745779142
-
A second order cone programming formulation for classifying missing data
-
Bhattacharyya, C., Pannagadatta, K.S., and Smola, A.J. A second order cone programming formulation for classifying missing data. In Advances in Neural Information Processing Systems, pp. 153-160, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, pp. 153-160
-
-
Bhattacharyya, C.1
Pannagadatta, K.S.2
Smola, A.J.3
-
2
-
-
0001740650
-
Training with noise is equivalent to tikhonov regularization
-
Bishop, C.M. Training with noise is equivalent to tikhonov regularization. Neural Computation, 7(1):108-116, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 108-116
-
-
Bishop, C.M.1
-
3
-
-
84860524227
-
Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
Blitzer, J., Dredze, M., and Pereira, F. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Association for Computational Linguistics, volume 45, pp. 440, 2007.
-
(2007)
Association for Computational Linguistics
, vol.45
, pp. 440
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
4
-
-
84869200775
-
Static prediction games for adversarial learning problems
-
Brückner, M., Kanzow, C., and Scheffer, T. Static prediction games for adversarial learning problems. Journal of Machine Learning Research, 12:2617-2654, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.12
, pp. 2617-2654
-
-
Brückner, M.1
Kanzow, C.2
Scheffer, T.3
-
6
-
-
10844249711
-
Vicinal risk minimization
-
Chapelle, O., Weston, J., Bottou, L., and Vapnik, V. Vicinal risk minimization. In Advances in Neural Information Processing Systems, pp. 416-422, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 416-422
-
-
Chapelle, O.1
Weston, J.2
Bottou, L.3
Vapnik, V.4
-
7
-
-
38949128364
-
Max-margin classification of data with absent features
-
Chechik, G., Heitz, G., Elidan, G., Abbeel, P., and Roller, D. Max-margin classification of data with absent features. Journal of Machine Learning Research, 9(Jan):1-21, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, Issue.JAN
, pp. 1-21
-
-
Chechik, G.1
Heitz, G.2
Elidan, G.3
Abbeel, P.4
Roller, D.5
-
8
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
Chen, M., Xu, Z., Weinberger, K.Q., and Sha, F. Marginalized denoising autoencoders for domain adaptation. In Proceedings of the International Conference on Machine Learning, pp. 767-774, 2012.
-
(2012)
Proceedings of the International Conference on Machine Learning
, pp. 767-774
-
-
Chen, M.1
Xu, Z.2
Weinberger, K.Q.3
Sha, F.4
-
9
-
-
84862283411
-
An analysis of single-layer networks in unsupervised feature learning
-
Coates, A., Lee, H., and Ng, A.Y. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the International Conference on Artificial Intelligence & Statistics, JMLR W&CP 15, pp. 215-223, 2011.
-
(2011)
Proceedings of the International Conference on Artificial Intelligence & Statistics, JMLR W&CP
, vol.15
, pp. 215-223
-
-
Coates, A.1
Lee, H.2
Ng, A.Y.3
-
14
-
-
80053443013
-
Domain adaptation for large-scale sentiment classification: A deep learning approach
-
Glorot, X., Bordes, A., and Bengio, Y. Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the International Conference on Machine Learning, pp. 513-520, 2011.
-
(2011)
Proceedings of the International Conference on Machine Learning
, pp. 513-520
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
16
-
-
84867720412
-
-
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
19
-
-
0000494466
-
Optimal brain damage
-
LeCun, Y., Denker, J.S., and Sofia, S.A. Optimal brain damage. In Advances in Neural Information Processing Systems, pp. 598-605, 1990.
-
(1990)
Advances in Neural Information Processing Systems
, pp. 598-605
-
-
LeCun, Y.1
Denker, J.S.2
Sofia, S.A.3
-
22
-
-
33745800909
-
Second order cone programming approaches for handling missing and uncertain data
-
Shivaswamy, P.K., Bhattacharyya, C., and Smola, A.J. Second order cone programming approaches for handling missing and uncertain data. Journal of Machine Learning Research, 7:1283-1314, 2006. (Pubitemid 44024599)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1283-1314
-
-
Shivaswamy, P.K.1
Bhattacharyya, C.2
Smola, A.J.3
-
23
-
-
0026017007
-
Creating artificial neural networks that generalize
-
Sietsma, J. and Dow, R.J.F. Creating artificial neural networks that generalize. Neural Networks, 4:67-79, 1991.
-
(1991)
Neural Networks
, vol.4
, pp. 67-79
-
-
Sietsma, J.1
Dow, R.J.F.2
-
24
-
-
78249247251
-
-
Technical Report IR-402, University of Massachusetts
-
Sutton, C., Sindelar, M., and McCallum, A. Feature bagging: Preventing weight undertraining in structured discriminative learning. Technical Report IR-402, University of Massachusetts, 2005.
-
(2005)
Feature Bagging: Preventing Weight Undertraining in Structured Discriminative Learning
-
-
Sutton, C.1
Sindelar, M.2
McCallum, A.3
-
25
-
-
85162055491
-
Convex learning with invariances
-
Teo, C.H., Globerson, A., Roweis, S., and Smola, A. Convex learning with invariances. Advances in Neural Information Processing Systems, 20:1489-1496, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1489-1496
-
-
Teo, C.H.1
Globerson, A.2
Roweis, S.3
Smola, A.4
-
26
-
-
54749092170
-
80 Million tiny images: A large dataset for non-parametric object and scene recognition
-
Torralba, A., Fergus, R., and Freeman, W.T. 80 million tiny images: A large dataset for non-parametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11):1958-1970, 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.11
, pp. 1958-1970
-
-
Torralba, A.1
Fergus, R.2
Freeman, W.T.3
-
27
-
-
33845326781
-
Robust support vector machines for classification and computational issues
-
DOI 10.1080/10556780600883791, PII W2K15V69V3768633
-
Trafalis, T. and Gilbert, R. Robust support vector machines for classification and computational issues. Optimization Methods and Software, 22(1):187-198, 2007. (Pubitemid 44878966)
-
(2007)
Optimization Methods and Software
, vol.22
, Issue.1
, pp. 187-198
-
-
Trafalis, T.B.1
Gilbert, R.C.2
-
28
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In Proceedings of the International Conference on Machine Learning, pp. 1096-1103, 2008.
-
(2008)
Proceedings of the International Conference on Machine Learning
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
-
29
-
-
0028425697
-
Functional approximation by feed-forward networks: A least-squares approach to generalization
-
Webb, A.R. Functional approximation by feed-forward networks: a least-squares approach to generalization. IEEE Transactions on Neural Networks, 5(3):363-371, 1994.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.3
, pp. 363-371
-
-
Webb, A.R.1
-
30
-
-
68949157380
-
Robustness and regularization of support vector machines
-
Xu, H., Caramanis, C., and Mannor, S. Robustness and regularization of support vector machines. Journal of Machine Learning Research, 10:1485-1510, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1485-1510
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
31
-
-
34250749560
-
-
Technical Report 430, Department of Statistics, University of Michigan
-
Zhu, J., Rosset, S., Zou, H., and Hastie, T. Multi-class AdaBoost. Technical Report 430, Department of Statistics, University of Michigan, 2006.
-
(2006)
Multi-class AdaBoost
-
-
Zhu, J.1
Rosset, S.2
Zou, H.3
Hastie, T.4
|