메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 410-418

Learning with marginalized corrupted features

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS;

EID: 84896535000     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (157)

References (31)
  • 2
    • 0001740650 scopus 로고
    • Training with noise is equivalent to tikhonov regularization
    • Bishop, C.M. Training with noise is equivalent to tikhonov regularization. Neural Computation, 7(1):108-116, 1995.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 3
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • Blitzer, J., Dredze, M., and Pereira, F. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Association for Computational Linguistics, volume 45, pp. 440, 2007.
    • (2007) Association for Computational Linguistics , vol.45 , pp. 440
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 22
    • 33745800909 scopus 로고    scopus 로고
    • Second order cone programming approaches for handling missing and uncertain data
    • Shivaswamy, P.K., Bhattacharyya, C., and Smola, A.J. Second order cone programming approaches for handling missing and uncertain data. Journal of Machine Learning Research, 7:1283-1314, 2006. (Pubitemid 44024599)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1283-1314
    • Shivaswamy, P.K.1    Bhattacharyya, C.2    Smola, A.J.3
  • 23
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma, J. and Dow, R.J.F. Creating artificial neural networks that generalize. Neural Networks, 4:67-79, 1991.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 27
    • 33845326781 scopus 로고    scopus 로고
    • Robust support vector machines for classification and computational issues
    • DOI 10.1080/10556780600883791, PII W2K15V69V3768633
    • Trafalis, T. and Gilbert, R. Robust support vector machines for classification and computational issues. Optimization Methods and Software, 22(1):187-198, 2007. (Pubitemid 44878966)
    • (2007) Optimization Methods and Software , vol.22 , Issue.1 , pp. 187-198
    • Trafalis, T.B.1    Gilbert, R.C.2
  • 29
    • 0028425697 scopus 로고
    • Functional approximation by feed-forward networks: A least-squares approach to generalization
    • Webb, A.R. Functional approximation by feed-forward networks: a least-squares approach to generalization. IEEE Transactions on Neural Networks, 5(3):363-371, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.3 , pp. 363-371
    • Webb, A.R.1
  • 31
    • 34250749560 scopus 로고    scopus 로고
    • Technical Report 430, Department of Statistics, University of Michigan
    • Zhu, J., Rosset, S., Zou, H., and Hastie, T. Multi-class AdaBoost. Technical Report 430, Department of Statistics, University of Michigan, 2006.
    • (2006) Multi-class AdaBoost
    • Zhu, J.1    Rosset, S.2    Zou, H.3    Hastie, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.