메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2227-2234

Scene-independent group profiling in crowd

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING; SOFTWARE ENGINEERING;

EID: 84911388960     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.285     Document Type: Conference Paper
Times cited : (250)

References (41)
  • 1
    • 2142762996 scopus 로고    scopus 로고
    • A human-computer interactive method for projected clustering
    • C. C. Aggarwal. A human-computer interactive method for projected clustering. TPAMI, 16(4):448-460, 2004.
    • (2004) TPAMI , vol.16 , Issue.4 , pp. 448-460
    • Aggarwal, C.C.1
  • 2
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis: A review
    • J. Aggarwal and M. S. Ryoo. Human activity analysis: A review. ACM Computing Surveys, 43(3):16, 2011.
    • (2011) ACM Computing Surveys , vol.43 , Issue.3 , pp. 16
    • Aggarwal, J.1    Ryoo, M.S.2
  • 3
    • 35148868709 scopus 로고    scopus 로고
    • A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis
    • S. Ali and M. Shah. A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In CVPR, 2007.
    • (2007) CVPR
    • Ali, S.1    Shah, M.2
  • 4
    • 84898814075 scopus 로고    scopus 로고
    • Cost-sensitive top-down/bottom-up inference for multiscale activity recognition
    • M. R. Amer, D. Xie, M. Zhao, S. Todorovic, and S.-C. Zhu. Cost-sensitive top-down/bottom-up inference for multiscale activity recognition. In ECCV, 2012.
    • (2012) ECCV
    • Amer, M.R.1    Xie, D.2    Zhao, M.3    Todorovic, S.4    Zhu, S.-C.5
  • 5
    • 33746816128 scopus 로고
    • The not-so-lonely crowd: Friendship groups in collective behavior
    • A. F. Aveni. The not-so-lonely crowd: Friendship groups in collective behavior. Sociometry, 40:96-99, 1977.
    • (1977) Sociometry , vol.40 , pp. 96-99
    • Aveni, A.F.1
  • 8
    • 41749099043 scopus 로고    scopus 로고
    • Modeling, clustering, and segmenting video with mixtures of dynamic textures
    • A. B. Chan and N. Vasconcelos. Modeling, clustering, and segmenting video with mixtures of dynamic textures. TPAMI, 30(5):909-926, 2008.
    • (2008) TPAMI , vol.30 , Issue.5 , pp. 909-926
    • Chan, A.B.1    Vasconcelos, N.2
  • 9
    • 84856655873 scopus 로고    scopus 로고
    • Probabilistic group-level motion analysis and scenario recognition
    • M.-C. Chang, N. Krahnstoever, and W. Ge. Probabilistic group-level motion analysis and scenario recognition. In ICCV, 2011.
    • (2011) ICCV
    • Chang, M.-C.1    Krahnstoever, N.2    Ge, W.3
  • 10
    • 84887328393 scopus 로고    scopus 로고
    • A unified framework for multi-target tracking and collective activity recognition
    • W. Choi and S. Savarese. A unified framework for multi-target tracking and collective activity recognition. In ECCV, 2012.
    • (2012) ECCV
    • Choi, W.1    Savarese, S.2
  • 11
    • 84859193194 scopus 로고    scopus 로고
    • Vision-based analysis of small groups in pedestrian crowds
    • W. Ge, R. T. Collins, and R. B. Ruback. Vision-based analysis of small groups in pedestrian crowds. TPAMI, 34(5):1003-1016, 2012.
    • (2012) TPAMI , vol.34 , Issue.5 , pp. 1003-1016
    • Ge, W.1    Collins, R.T.2    Ruback, R.B.3
  • 13
    • 35248856713 scopus 로고
    • The statistics of crowd fluids
    • L. F. Henderson. The statistics of crowd fluids. Nature, 229:381-383, 1971.
    • (1971) Nature , vol.229 , pp. 381-383
    • Henderson, L.F.1
  • 14
    • 84855930860 scopus 로고    scopus 로고
    • Simulating and evaluating the local behavior of small pedestrian groups
    • I. Karamouzas and M. Overmars. Simulating and evaluating the local behavior of small pedestrian groups. TVCG, 18(3):394-406, 2012.
    • (2012) TVCG , vol.18 , Issue.3 , pp. 394-406
    • Karamouzas, I.1    Overmars, M.2
  • 15
    • 84883093074 scopus 로고    scopus 로고
    • Velocity-based modeling of physical interactions in multi-agent simulations
    • ACM
    • S. Kim, S. J. Guy, and D. Manocha. Velocity-based modeling of physical interactions in multi-agent simulations. In SIGGRAPH, pages 125-133. ACM, 2013.
    • (2013) SIGGRAPH , pp. 125-133
    • Kim, S.1    Guy, S.J.2    Manocha, D.3
  • 16
    • 70450214749 scopus 로고    scopus 로고
    • Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models
    • L. Kratz and K. Nishino. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In CVPR, 2009.
    • (2009) CVPR
    • Kratz, L.1    Nishino, K.2
  • 17
    • 77956008040 scopus 로고    scopus 로고
    • What's going on? Discovering spatio-temporal dependencies in dynamic scenes
    • D. Kuettel, M. D. Breitenstein, L. Van Gool, and V. Ferrari. What's going on? discovering spatio-temporal dependencies in dynamic scenes. In CVPR, 2010.
    • (2010) CVPR
    • Kuettel, D.1    Breitenstein, M.D.2    Van Gool, L.3    Ferrari, V.4
  • 19
    • 84862638723 scopus 로고    scopus 로고
    • Discriminative latent models for recognizing contextual group activities
    • T. Lan, Y. Wang, W. Yang, S. N. Robinovitch, and G. Mori. Discriminative latent models for recognizing contextual group activities. TPAMI, 34(8):1549-1562, 2012.
    • (2012) TPAMI , vol.34 , Issue.8 , pp. 1549-1562
    • Lan, T.1    Wang, Y.2    Yang, W.3    Robinovitch, S.N.4    Mori, G.5
  • 20
    • 0001116877 scopus 로고
    • Binary codes capable of correcting deletions, insertions and reversals
    • V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet physics doklady, 10: 707-710, 1966.
    • (1966) Soviet Physics Doklady , vol.10 , pp. 707-710
    • Levenshtein, V.I.1
  • 21
    • 84873158443 scopus 로고    scopus 로고
    • Recognizing interactive group activities using temporal interaction matrices and their riemannian statistics
    • R. Li, R. Chellappa, and S. K. Zhou. Recognizing interactive group activities using temporal interaction matrices and their riemannian statistics. IJCV, 101(2):305-328, 2013.
    • (2013) IJCV , vol.101 , Issue.2 , pp. 305-328
    • Li, R.1    Chellappa, R.2    Zhou, S.K.3
  • 22
    • 84898877975 scopus 로고    scopus 로고
    • Modelling multi-object activity by gaussian processes
    • C. C. Loy, T. Xiang, and S. Gong. Modelling multi-object activity by gaussian processes. In BMVC, pages 1-11, 2009.
    • (2009) BMVC , pp. 1-11
    • Loy, C.C.1    Xiang, T.2    Gong, S.3
  • 23
    • 77956458108 scopus 로고    scopus 로고
    • Detecting and discriminating behavioural anomalies
    • C. C. Loy, T. Xiang, and S. Gong. Detecting and discriminating behavioural anomalies. Pattern Recognition, 44(1):117-132, 2011.
    • (2011) Pattern Recognition , vol.44 , Issue.1 , pp. 117-132
    • Loy, C.C.1    Xiang, T.2    Gong, S.3
  • 24
    • 70450255364 scopus 로고    scopus 로고
    • Abnormal crowd behavior detection using social force model
    • R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using social force model. In CVPR, 2009.
    • (2009) CVPR
    • Mehran, R.1    Oyama, A.2    Shah, M.3
  • 25
    • 67650907147 scopus 로고    scopus 로고
    • Collective information processing and pattern formation in swarms, flocks, and crowds
    • M. Moussaid, S. Garnier, G. Theraulaz, and D. Helbing. Collective information processing and pattern formation in swarms, flocks, and crowds. Topics in Cognitive Science, 1:469-497, 2009.
    • (2009) Topics in Cognitive Science , vol.1 , pp. 469-497
    • Moussaid, M.1    Garnier, S.2    Theraulaz, G.3    Helbing, D.4
  • 26
    • 77956323937 scopus 로고    scopus 로고
    • The walking behaviour of pedestrian social groups and its impact on crowd dynamics
    • M. Moussäid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS, 5(4), 2010.
    • (2010) PloS , vol.5 , Issue.4
    • Moussäid, M.1    Perozo, N.2    Garnier, S.3    Helbing, D.4    Theraulaz, G.5
  • 27
    • 77953225589 scopus 로고    scopus 로고
    • You'll never walk alone: Modeling social behavior for multi-target tracking
    • S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You'll never walk alone: Modeling social behavior for multi-target tracking. In ICCV, 2009.
    • (2009) ICCV
    • Pellegrini, S.1    Ess, A.2    Schindler, K.3    Van Gool, L.4
  • 28
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand. Objective criteria for the evaluation of clustering methods. JASSA, 66(336):846-850, 1971.
    • (1971) JASSA , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 30
    • 33847229934 scopus 로고    scopus 로고
    • A spectral clustering approach to finding communities in graphs
    • S. Smyth and S. White. A spectral clustering approach to finding communities in graphs. In SDM, 2005.
    • (2005) SDM
    • Smyth, S.1    White, S.2
  • 31
    • 20444507542 scopus 로고    scopus 로고
    • Hydrodynamics abd phases of flocks
    • J. Toner, Y. Tu, and S. Ramaswamy. Hydrodynamics abd phases of flocks. Annals of Physics, 318:170-244, 2005.
    • (2005) Annals of Physics , vol.318 , pp. 170-244
    • Toner, J.1    Tu, Y.2    Ramaswamy, S.3
  • 33
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 34
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models
    • X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. TPAMI, 31(3):539-555, 2009.
    • (2009) TPAMI , vol.31 , Issue.3 , pp. 539-555
    • Wang, X.1    Ma, X.2    Grimson, W.E.L.3
  • 36
    • 85157983500 scopus 로고    scopus 로고
    • A local learning approach for clustering
    • M. Wu and B. Schölkopf. A local learning approach for clustering. In NIPS, 2006.
    • (2006) NIPS
    • Wu, M.1    Schölkopf, B.2
  • 37
    • 77956377721 scopus 로고    scopus 로고
    • Collective motion and density fluctuations in bacterial colonies
    • H.-P. Zhang, A. Beér, E.-L. Florin, and H. L. Swinney. Collective motion and density fluctuations in bacterial colonies. PNAS, 107(31):13626-13630, 2010.
    • (2010) PNAS , vol.107 , Issue.31 , pp. 13626-13630
    • Zhang, H.-P.1    Beér, A.2    Florin, E.-L.3    Swinney, H.L.4
  • 38
    • 84898799986 scopus 로고    scopus 로고
    • Graph degree linkage: Agglomerative clustering on a directed graph
    • W. Zhang, X. Wang, D. Zhao, and X. Tang. Graph degree linkage: agglomerative clustering on a directed graph. In ECCV. 2012.
    • (2012) ECCV
    • Zhang, W.1    Wang, X.2    Zhao, D.3    Tang, X.4
  • 39
    • 84911386894 scopus 로고    scopus 로고
    • Coherent filtering: Detecting coherent motions from crowd clutters
    • B. Zhou, X. Tang, and X. Wang. Coherent filtering: detecting coherent motions from crowd clutters. In ECCV. 2012.
    • (2012) ECCV
    • Zhou, B.1    Tang, X.2    Wang, X.3
  • 40
    • 84887389356 scopus 로고    scopus 로고
    • Measuring crowd collectiveness
    • B. Zhou, X. Tang, and X. Wang. Measuring crowd collectiveness. In CVPR, 2013.
    • (2013) CVPR
    • Zhou, B.1    Tang, X.2    Wang, X.3
  • 41
    • 84866645335 scopus 로고    scopus 로고
    • Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents
    • B. Zhou, X. Wang, and X. Tang. Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents. In CVPR, 2012.
    • (2012) CVPR
    • Zhou, B.1    Wang, X.2    Tang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.