메뉴 건너뛰기




Volumn 16, Issue 4, 2004, Pages 448-460

A Human-Computer Interactive Method for Projected Clustering

Author keywords

Clustering; High dimensional data mining; Human computer interaction

Indexed keywords

CLUSTERING; DENSITY ESTIMATION PROCESS; DISTANCE FUNCTIONS; HIGH-DIMENSIONAL DATA MINING;

EID: 2142762996     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2004.1269669     Document Type: Article
Times cited : (47)

References (33)
  • 1
    • 0035789614 scopus 로고    scopus 로고
    • A Human-Computer Cooperative System for Effective High Dimensional Clustering
    • C.C. Aggarwal, "A Human-Computer Cooperative System for Effective High Dimensional Clustering," Proc. Knowledge Discovery and Data Mining Conf., pp. 221-226, 2001.
    • (2001) Proc. Knowledge Discovery and Data Mining Conf. , pp. 221-226
    • Aggarwal, C.C.1
  • 3
    • 0039253822 scopus 로고    scopus 로고
    • Finding Generalized Projected Clusters in High Dimensional Spaces
    • C.C. Aggarwal and P.S. Yu, "Finding Generalized Projected Clusters in High Dimensional Spaces," Proc. ACM SIGMOD Conf., pp. 70-81, 2000.
    • (2000) Proc. ACM SIGMOD Conf. , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 4
    • 0032090765 scopus 로고    scopus 로고
    • Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications," Proc. ACM SIGMOD Conf., pp. 94-105, 1998.
    • (1998) Proc. ACM SIGMOD Conf. , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 5
    • 0001882616 scopus 로고
    • Fast Algorithms for Mining Association Rules in Large Databases
    • R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules in Large Databases," Proc. Very Large Databases Conf., pp. 487-499, 1994.
    • (1994) Proc. Very Large Databases Conf. , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 11
    • 0005287692 scopus 로고    scopus 로고
    • Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces
    • K. Chakrabarti and S. Mehrotra, "Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces," Proc. Very Large Databases Conf., pp. 89-100, 2000.
    • (2000) Proc. Very Large Databases Conf. , pp. 89-100
    • Chakrabarti, K.1    Mehrotra, S.2
  • 15
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An Efficient Clustering Algorithm for Large Databases
    • S. Guha, R. Rastogi, and K. Shim, "CURE: An Efficient Clustering Algorithm for Large Databases," Proc. ACM SIGMOD Conf., pp. 73-84, 1998.
    • (1998) Proc. ACM SIGMOD Conf. , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 16
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A Robust Clustering Algorithm for Categorical Attributes
    • S. Guha, R. Rastogi, and K. Shim, "ROCK: A Robust Clustering Algorithm for Categorical Attributes," Information Systems, vol. 25, no. 5, pp. 345-366, 2000.
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 18
    • 0032650246 scopus 로고    scopus 로고
    • Constraint Based Multi-dimensional Data Mining
    • Aug.
    • J. Han, L. Lakshmanan, and R. Ng, "Constraint Based Multi-dimensional Data Mining," Computer, vol. 32, no. 8, pp. 46-50, Aug. 1999.
    • (1999) Computer , vol.32 , Issue.8 , pp. 46-50
    • Han, J.1    Lakshmanan, L.2    Ng, R.3
  • 19
    • 0000835955 scopus 로고    scopus 로고
    • Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering
    • A. Hinneburg and D.A. Keim, "Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering," Proc. Very Large Databases Conf., pp. 506-517, 1999.
    • (1999) Proc. Very Large Databases Conf. , pp. 506-517
    • Hinneburg, A.1    Keim, D.A.2
  • 27
    • 0003136237 scopus 로고
    • Efficient and Effective Clustering Methods for Spatial Data Mining
    • R. Ng and J. Han, "Efficient and Effective Clustering Methods for Spatial Data Mining," Proc. Very Large Databases Conf., pp. 144-155, 1994.
    • (1994) Proc. Very Large Databases Conf. , pp. 144-155
    • Ng, R.1    Han, J.2
  • 28
    • 34250647666 scopus 로고    scopus 로고
    • User-Adaptive Exploration of Multidimensional Data
    • S. Sarawagi, "User-Adaptive Exploration of Multidimensional Data," Proc. Very Large Databases Conf., pp. 307-316, 2000.
    • (2000) Proc. Very Large Databases Conf. , pp. 307-316
    • Sarawagi, S.1
  • 31
    • 0031701179 scopus 로고    scopus 로고
    • A Distribution-Based Clustering Algorithm for Mining in Large Spatial Databases
    • X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, "A Distribution-Based Clustering Algorithm for Mining in Large Spatial Databases," Proc. Int'l Conf. Data Eng. Conf., pp. 324-331, 1998.
    • (1998) Proc. Int'l Conf. Data Eng. Conf. , pp. 324-331
    • Xu, X.1    Ester, M.2    Kriegel, H.-P.3    Sander, J.4
  • 32
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An Efficient Data Clustering Method for Very Large Databases
    • T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: An Efficient Data Clustering Method for Very Large Databases," Proc. ACM SIGMOD Conf., pp. 103-114, 1996.
    • (1996) Proc. ACM SIGMOD Conf. , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 33
    • 0034593062 scopus 로고    scopus 로고
    • Interactive Exploration of Very Large Relational Databases Through 3D Dynamic Projections
    • L. Yang, "Interactive Exploration of Very Large Relational Databases Through 3D Dynamic Projections," Proc. ACM Knowledge Discovery and Data Mining Conf., pp. 236-243, 2000.
    • (2000) Proc. ACM Knowledge Discovery and Data Mining Conf. , pp. 236-243
    • Yang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.