메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2871-2878

Understanding collective crowd behaviors: Learning a Mixture model of Dynamic pedestrian-Agents

Author keywords

[No Author keywords available]

Indexed keywords

AGENT-BASED MODELING; CENTRAL STATIONS; COLLECTIVE BEHAVIOR; CROWD BEHAVIOR; DATA SETS; LINEAR DYNAMIC SYSTEM; MIXTURE MODEL; NEW YORK; PEDESTRIAN BEHAVIOR; QUANTITATIVE EXPERIMENTS; VIDEO SURVEILLANCE;

EID: 84866645335     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248013     Document Type: Conference Paper
Times cited : (342)

References (26)
  • 1
    • 70450209996 scopus 로고    scopus 로고
    • Floor fields for tracking in high density crowd scenes
    • S. Ali and M. Shah. Floor fields for tracking in high density crowd scenes. In Proc. ECCV, 2008.
    • (2008) Proc. ECCV
    • Ali, S.1    Shah, M.2
  • 3
    • 0037076425 scopus 로고    scopus 로고
    • Agent-based modeling: Methods and techniques for simulating human systems
    • E. Bonabeau. Agent-based modeling: Methods and techniques for simulating human systems. PNAS, 2002.
    • (2002) PNAS
    • Bonabeau, E.1
  • 4
    • 0034727079 scopus 로고    scopus 로고
    • Simulating dynamical features of escape panic
    • D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic. Nature, 2000.
    • (2000) Nature
    • Helbing, D.1    Farkas, I.2    Vicsek, T.3
  • 5
    • 35949007691 scopus 로고
    • Social force model for pedestrian dynamics
    • D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical review E, 1995.
    • (1995) Physical Review e
    • Helbing, D.1    Molnar, P.2
  • 6
    • 85085175172 scopus 로고    scopus 로고
    • A Markov clustering topic model for mining behaviour in video
    • T. Hospedales, S. Gong, and T. Xiang. A markov clustering topic model for mining behaviour in video. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Hospedales, T.1    Gong, S.2    Xiang, T.3
  • 10
    • 70450202492 scopus 로고    scopus 로고
    • Learning visual flows: A Lie algebraic approach
    • D. Lin, E. Grimson, and J. Fisher. Learning visual flows: A Lie algebraic approach. In Proc.CVPR, 2009.
    • (2009) Proc.CVPR
    • Lin, D.1    Grimson, E.2    Fisher, J.3
  • 11
    • 20444410793 scopus 로고    scopus 로고
    • Learning semantic scene models from observing activity in visual surveillance
    • D. Makris and T. Ellis. Learning semantic scene models from observing activity in visual surveillance. IEEE Trans. on SMC, 2005.
    • (2005) IEEE Trans. on SMC
    • Makris, D.1    Ellis, T.2
  • 12
    • 70450255364 scopus 로고    scopus 로고
    • Abnormal crowd behavior detection using social force model
    • R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using social force model. In Proc.CVPR, 2009.
    • (2009) Proc.CVPR
    • Mehran, R.1    Oyama, A.2    Shah, M.3
  • 15
    • 77953225589 scopus 로고    scopus 로고
    • You'll never walk alone: Modeling social behavior for multi-target tracking
    • S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You'll never walk alone: Modeling social behavior for multi-target tracking. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Pellegrini, S.1    Ess, A.2    Schindler, K.3    Van Gool, L.4
  • 16
    • 77953186524 scopus 로고    scopus 로고
    • Learning pedestrian dynamics from the real world
    • P. Scovanner and M. Tappen. Learning pedestrian dynamics from the real world. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Scovanner, P.1    Tappen, M.2
  • 17
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the em algorithm
    • R. Shumway and D. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. Journal of time series analysis, 1982.
    • (1982) Journal of Time Series Analysis
    • Shumway, R.1    Stoffer, D.2
  • 18
    • 84954434547 scopus 로고    scopus 로고
    • Estimating tracking sources and sinks
    • C. Stauffer. Estimating tracking sources and sinks. In Proc.CVPR Workshop, 2003.
    • (2003) Proc.CVPR Workshop
    • Stauffer, C.1
  • 21
    • 51949084186 scopus 로고    scopus 로고
    • Trajectory analysis and semantic region modeling using a nonparametric Bayesian model
    • X. Wang, K. Ma, G. Ng, and W. Grimson. Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In Proc.CVPR, 2008.
    • (2008) Proc.CVPR
    • Wang, X.1    Ma, K.2    Ng, G.3    Grimson, W.4
  • 22
    • 80052959472 scopus 로고    scopus 로고
    • Trajectory analysis and semantic region modeling using nonparametric hierarchical bayesian models
    • X. Wang, K. Ma, G. Ng, and W. Grimson. Trajectory analysis and semantic region modeling using nonparametric hierarchical bayesian models. Int'l Journal of Computer Vision, 2011.
    • (2011) Int'l Journal of Computer Vision
    • Wang, X.1    Ma, K.2    Ng, G.3    Grimson, W.4
  • 23
    • 79961130110 scopus 로고    scopus 로고
    • Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models
    • X. Wang, X. Ma, and W. Grimson. Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Trans. on PAMI, 2008.
    • (2008) IEEE Trans. on PAMI
    • Wang, X.1    Ma, X.2    Grimson, W.3
  • 24
    • 35648962129 scopus 로고    scopus 로고
    • Learning semantic scene models by trajectory analysis
    • X.Wang, K. Tieu, andW. Grimson. Learning semantic scene models by trajectory analysis. Proc. ECCV, 2006.
    • (2006) Proc. ECCV
    • Wang, X.1    Tieu, K.2    Grimson, W.3
  • 25
    • 80052901211 scopus 로고    scopus 로고
    • Random field topic model for semantic region analysis in crowded scenes from tracklets
    • B. Zhou, X. Wang, and X. Tang. Random field topic model for semantic region analysis in crowded scenes from tracklets. In Proc.CVPR, 2011.
    • (2011) Proc.CVPR
    • Zhou, B.1    Wang, X.2    Tang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.