메뉴 건너뛰기




Volumn 101, Issue 2, 2013, Pages 305-328

Recognizing interactive group activities using temporal interaction matrices and their riemannian statistics

Author keywords

Activity recognition; Event analysis

Indexed keywords

ACTIVITY ANALYSIS; ACTIVITY RECOGNITION; BIOLOGICAL MONITORING; DESCRIPTORS; DOMAIN KNOWLEDGE; EVENT ANALYSIS; GROUP ACTIVITIES; HUMAN ACTIONS; INTERACTION MATRICES; INTERACTIVE GROUPS; MAXIMUM A POSTERIORI; MOTION PATTERN; MULTI-MODAL; POINT TRAJECTORY; PROBABILITY DENSITIES; SPATIAL TEMPORALS; STATISTICAL PROPERTIES;

EID: 84873158443     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-012-0573-0     Document Type: Article
Times cited : (14)

References (50)
  • 4
    • 77953176013 scopus 로고    scopus 로고
    • What are they doing?: Collective activity classification using spatio-temporal relationship among people
    • Kyoto, Japan
    • Choi, W., Shahid, K., & Savarese, S. (2009). What are they doing?: Collective activity classification using spatio-temporal relationship among people. In 9th international workshop on visual surveillance, Kyoto, Japan.
    • (2009) 9th International Workshop on Visual Surveillance
    • Choi, W.1    Shahid, K.2    Savarese, S.3
  • 10
    • 0344983339 scopus 로고    scopus 로고
    • Recognition of group activities using dynamic probabilistic networks
    • Nice, France
    • Gong, S., & Xiang, T. (2003). Recognition of group activities using dynamic probabilistic networks. In IEEE international conference on computer vision, Nice, France.
    • (2003) IEEE International Conference on Computer Vision
    • Gong, S.1    Xiang, T.2
  • 12
    • 34249677392 scopus 로고    scopus 로고
    • Learning, detection and representation of multi-agent events in videos
    • 10.1016/j.artint.2007.04.002
    • Hakeem, A., & Shah, M. (2007). Learning, detection and representation of multi-agent events in videos. Artificial Intelligence, 171, 586-605.
    • (2007) Artificial Intelligence , vol.171 , pp. 586-605
    • Hakeem, A.1    Shah, M.2
  • 15
    • 33746649771 scopus 로고    scopus 로고
    • Semantic analysis of soccer video using dynamic bayesian network
    • 10.1109/TMM.2006.876289
    • Huang, C., Shih, H., & Chao, C. (2006). Semantic analysis of soccer video using dynamic bayesian network. IEEE Transactions on Multimedia, 8(4), 749-760.
    • (2006) IEEE Transactions on Multimedia , vol.8 , Issue.4 , pp. 749-760
    • Huang, C.1    Shih, H.2    Chao, C.3
  • 16
    • 0035270390 scopus 로고    scopus 로고
    • Recognizing planned, multiperson action
    • 1011.68553 10.1006/cviu.2000.0896
    • Intille, S., & Bobick, A. (2001). Recognizing planned, multiperson action. Computer Vision and Image Understanding, 81, 414-445.
    • (2001) Computer Vision and Image Understanding , vol.81 , pp. 414-445
    • Intille, S.1    Bobick, A.2
  • 18
    • 36348968443 scopus 로고    scopus 로고
    • A multiple-hypothesis approach for multiobject visual tracking
    • 2472426 10.1109/TIP.2007.906254
    • Joo, S., & Chellappa, R. (2007). A multiple-hypothesis approach for multiobject visual tracking. IEEE Transactions on Image Processing, 16(11), 2849-2854.
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.11 , pp. 2849-2854
    • Joo, S.1    Chellappa, R.2
  • 21
    • 84883082511 scopus 로고    scopus 로고
    • Detecting group activities using rigidity of formation
    • Singapore
    • Khan, S. M., & Shah, M. (2005). Detecting group activities using rigidity of formation. In ACM multimedia, Singapore.
    • (2005) ACM Multimedia
    • Khan, S.M.1    Shah, M.2
  • 23
    • 33845575888 scopus 로고    scopus 로고
    • Discriminative learning of mixture of bayesian network classifiers for sequence classification
    • New York, NY
    • Kim, M., & Pavlovic, V. (2006). Discriminative learning of mixture of bayesian network classifiers for sequence classification. In IEEE conference on computer vision and pattern recognition, New York, NY.
    • (2006) IEEE Conference on Computer Vision and Pattern Recognition
    • Kim, M.1    Pavlovic, V.2
  • 25
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • 75510 10.1002/nav.3800020109
    • Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83-97.
    • (1955) Naval Research Logistics Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 26
    • 85161996274 scopus 로고    scopus 로고
    • Beyond actions: Discriminative models for contextual group activities
    • Vancouver, BC
    • Lan, T., Wang, Y., Yang, W., & Mori, G. (2010). Beyond actions: discriminative models for contextual group activities. In Neural information processing systems, Vancouver, BC.
    • (2010) Neural Information Processing Systems
    • Lan, T.1    Wang, Y.2    Yang, W.3    Mori, G.4
  • 27
  • 28
    • 70450188059 scopus 로고    scopus 로고
    • Using camera motion to identify different types of American football plays
    • Baltimore, MD
    • Lazarescu, M., & Venkatesh, S. (2003). Using camera motion to identify different types of American football plays. In IEEE international conference on multimedia and expo, Baltimore, MD (pp. 181-184).
    • (2003) IEEE International Conference on Multimedia and Expo , pp. 181-184
    • Lazarescu, M.1    Venkatesh, S.2
  • 29
    • 70450183890 scopus 로고    scopus 로고
    • Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition
    • Miami, FL
    • Li, R., Chellappa, R., & Zhou, S. (2009). Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition. In IEEE conference on computer vision and pattern recognition, Miami, FL.
    • (2009) IEEE Conference on Computer Vision and Pattern Recognition
    • Li, R.1    Chellappa, R.2    Zhou, S.3
  • 30
    • 84873202910 scopus 로고    scopus 로고
    • libSVM
    • libSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (2012).
    • (2012)
  • 31
    • 84891503067 scopus 로고    scopus 로고
    • Effective feature extraction for play detection in American football video
    • Melbourne, Australia
    • Liu, T., Ma, W., & Zhang, H. (2005). Effective feature extraction for play detection in American football video. In Multimedia modeling, Melbourne, Australia.
    • (2005) Multimedia Modeling
    • Liu, T.1    Ma, W.2    Zhang, H.3
  • 32
    • 32044463876 scopus 로고    scopus 로고
    • Multi-agent activity recognition using observation decomposed hidden Markov models
    • 1107.65097 10.1016/j.imavis.2005.09.024
    • Liu, X., & Chua, C. (2006). Multi-agent activity recognition using observation decomposed hidden Markov models. Image and Vision Computing, 24(2), 166-175.
    • (2006) Image and Vision Computing , vol.24 , Issue.2 , pp. 166-175
    • Liu, X.1    Chua, C.2
  • 34
    • 33749990780 scopus 로고    scopus 로고
    • A survey of advances in vision-based human motion capture and analysis
    • 10.1016/j.cviu.2006.08.002
    • Moeslund, T. B., Hilton, A., & Kruger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104, 90-126.
    • (2006) Computer Vision and Image Understanding , vol.104 , pp. 90-126
    • Moeslund, T.B.1    Hilton, A.2    Kruger, V.3
  • 37
    • 33749642835 scopus 로고    scopus 로고
    • Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements
    • 2254442 10.1007/s10851-006-6228-4
    • Pennec, X. (2006). Intrinsic statistics on riemannian manifolds: basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1), 127-154.
    • (2006) Journal of Mathematical Imaging and Vision , vol.25 , Issue.1 , pp. 127-154
    • Pennec, X.1
  • 38
    • 63249124423 scopus 로고    scopus 로고
    • A trajectory-based analysis of coordinated team activity in a basketball game
    • 10.1016/j.cviu.2008.03.001
    • Perse, M., Kristan, M., Kovacic, S., Vuckovic, G., & Pers, J. (2009). A trajectory-based analysis of coordinated team activity in a basketball game. Computer Vision and Image Understanding, 113(5), 612-621.
    • (2009) Computer Vision and Image Understanding , vol.113 , Issue.5 , pp. 612-621
    • Perse, M.1    Kristan, M.2    Kovacic, S.3    Vuckovic, G.4    Pers, J.5
  • 39
    • 77949275097 scopus 로고    scopus 로고
    • A survey on vision-based human action recognition
    • 10.1016/j.imavis.2009.11.014
    • Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976-990.
    • (2010) Image and Vision Computing , vol.28 , Issue.6 , pp. 976-990
    • Poppe, R.1
  • 41
    • 77953187842 scopus 로고    scopus 로고
    • Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities
    • Kyoto Japan
    • Ryoo, M. S., & Aggarwal, J. K. (2009). Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In IEEE international conference on computer vision, Japan, Kyoto.
    • (2009) IEEE International Conference on Computer Vision
    • Ryoo, M.S.1    Aggarwal, J.K.2
  • 42
    • 79953179389 scopus 로고    scopus 로고
    • Stochastic representation and recognition of high-level group activities
    • 2783696 1235.68285 10.1007/s11263-010-0355-5
    • Ryoo, M. S., & Aggarwal, J. K. (2011). Stochastic representation and recognition of high-level group activities. International Journal of Computer Vision, 93, 183-200.
    • (2011) International Journal of Computer Vision , vol.93 , pp. 183-200
    • Ryoo, M.S.1    Aggarwal, J.K.2
  • 43
    • 37849037402 scopus 로고    scopus 로고
    • A 3-dimensional sift descriptor and its application to action recognition
    • Augsburg, Germany
    • Scovanner, P., Ali, S., & Shah, M. (2007). A 3-dimensional sift descriptor and its application to action recognition. In ACM multimedia, Augsburg, Germany.
    • (2007) ACM Multimedia
    • Scovanner, P.1    Ali, S.2    Shah, M.3
  • 45
    • 84873116250 scopus 로고    scopus 로고
    • Learning and recognizing American football plays
    • Snowbird, UT
    • Swears, E., & Hoogs, A. (2009). Learning and recognizing American football plays. In Snowbird learning workshop, Snowbird, UT.
    • (2009) Snowbird Learning Workshop
    • Swears, E.1    Hoogs, A.2
  • 46
    • 27744441549 scopus 로고    scopus 로고
    • Shape activity: A continuous-state HMM for moving/deforming shapes with application to abnormal activity detection
    • 10.1109/TIP.2005.852197
    • Vaswani, N., Roy-Chowdhury, A., & Chellappa, R. (2005). Shape activity: a continuous-state HMM for moving/deforming shapes with application to abnormal activity detection. IEEE Transactions on Image Processing, 14, 1603-1616.
    • (2005) IEEE Transactions on Image Processing , vol.14 , pp. 1603-1616
    • Vaswani, N.1    Roy-Chowdhury, A.2    Chellappa, R.3
  • 48
    • 33846013241 scopus 로고    scopus 로고
    • Object tracking: A survey
    • 10.1145/1177352.1177355
    • Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: a survey. ACM Computing Surveys, 38(4), 1-45.
    • (2006) ACM Computing Surveys , vol.38 , Issue.4 , pp. 1-45
    • Yilmaz, A.1    Javed, O.2    Shah, M.3
  • 49
    • 33646748325 scopus 로고    scopus 로고
    • Modeling individual and group actions in meetings with layered HMMs
    • 10.1109/TMM.2006.870735
    • Zhang, D., Gatica-Perez, D., Bengio, S., & McCowan, I. (2006). Modeling individual and group actions in meetings with layered HMMs. IEEE Transactions on Multimedia, 8, 509-520.
    • (2006) IEEE Transactions on Multimedia , vol.8 , pp. 509-520
    • Zhang, D.1    Gatica-Perez, D.2    Bengio, S.3    McCowan, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.