메뉴 건너뛰기




Volumn , Issue , 2013, Pages 129-136

Xbox movies recommendations: Variational bayes matrix factorization with embedded feature selection

Author keywords

Feature selection; Recommender system

Indexed keywords

EMBEDDED FEATURE SELECTIONS; FEATURE PARAMETERS; INFERENCE ALGORITHM; LIKELIHOOD FUNCTIONS; MATRIX FACTORIZATIONS; PREDICTIVE ACCURACY; REGULARIZATION COEFFICIENTS; STOCHASTIC GRADIENT DESCENT;

EID: 84887573819     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2507157.2507168     Document Type: Conference Paper
Times cited : (44)

References (22)
  • 1
    • 77950940282 scopus 로고    scopus 로고
    • FLDA: Matrix factorization through latent dirichlet allocation
    • D. Agarwal and B.-C. Chen. fLDA: matrix factorization through Latent Dirichlet Allocation. In WSDM, pages 91-100, 2010.
    • (2010) WSDM , pp. 91-100
    • Agarwal, D.1    Chen, B.-C.2
  • 5
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • R. D. Burke. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact., 12(4):331-370, 2002.
    • (2002) User Model. User-Adapt. Interact. , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.D.1
  • 9
    • 33749044832 scopus 로고    scopus 로고
    • A variational approach to bayesian logistic regression problems and their extensions
    • T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their extensions. In Artificial Intelligence and Statistics, 1996.
    • (1996) Artificial Intelligence and Statistics
    • Jaakkola, T.1    Jordan, M.2
  • 10
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 12
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.M.2    Volinsky, C.3
  • 14
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):698-714, 1992.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 698-714
    • Mackay, D.J.C.1
  • 17
    • 84859766908 scopus 로고    scopus 로고
    • A hierarchical model for ordinal matrix factorization
    • U. Paquet, B. Thomson, and O. Winther. A hierarchical model for ordinal matrix factorization. Statistics and Computing, 22(4):945-957, 2012.
    • (2012) Statistics and Computing , vol.22 , Issue.4 , pp. 945-957
    • Paquet, U.1    Thomson, B.2    Winther, O.3
  • 20
    • 77956208065 scopus 로고    scopus 로고
    • Training and testing of recommender systems on data missing not at random
    • H. Steck. Training and testing of recommender systems on data missing not at random. In KDD, pages 713-722, 2010.
    • (2010) KDD , pp. 713-722
    • Steck, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.