-
1
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.1
-
4
-
-
84887571737
-
The Yahoo! music dataset and KDD-Cup'11
-
G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Yahoo! music dataset and KDD-Cup'11. Journal Of Machine Learning Research, 18:3-18, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.18
, pp. 3-18
-
-
Dror, G.1
Koenigstein, N.2
Koren, Y.3
Weimer, M.4
-
5
-
-
84893127024
-
Personalized ranking for non-uniformly sampled items
-
Z. Gantner, L. Drumond, C. Freudenthaler, and L. Schmidt-Thieme. Personalized ranking for non-uniformly sampled items. Journal of Machine Learning Research, 18:231-247, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.18
, pp. 231-247
-
-
Gantner, Z.1
Drumond, L.2
Freudenthaler, C.3
Schmidt-Thieme, L.4
-
8
-
-
33749044832
-
A variational approach to Bayesian logistic regression problems and their extensions
-
T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their extensions. In Artificial Intelligence and Statistics, 1996.
-
(1996)
Artificial Intelligence and Statistics
-
-
Jaakkola, T.1
Jordan, M.2
-
9
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
13
-
-
0000234257
-
The evidence framework applied to classification networks
-
D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):698-714, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.5
, pp. 698-714
-
-
Mackay, D.J.C.1
-
14
-
-
0004087397
-
Probabilistic inference using markov chain monte carlo methods
-
University of Toronto
-
R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993.
-
(1993)
Technical Report CRG-TR-93-1, Dept. of Computer Science
-
-
Neal, R.M.1
-
15
-
-
0035420732
-
-
Random graphs with arbitrary degree distributions and their applications
-
M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64:026118, 2001.
-
(2001)
Phys. Rev. e
, vol.64
, pp. 026118
-
-
Newman, M.E.J.1
Strogatz, S.H.2
Watts, D.J.3
-
18
-
-
70350623327
-
Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering
-
R. Pan and M. Scholz. Mind the gaps: Weighting the unknown in large-scale one-class collaborative filtering. In KDD, pages 667-675, 2009.
-
(2009)
KDD
, pp. 667-675
-
-
Pan, R.1
Scholz, M.2
-
19
-
-
67149083078
-
One-class collaborative filtering
-
R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collaborative filtering. In IEEE International Conference on Data Mining, pages 502-511, 2008.
-
(2008)
IEEE International Conference on Data Mining
, pp. 502-511
-
-
Pan, R.1
Zhou, Y.2
Cao, B.3
Liu, N.4
Lukose, R.5
Scholz, M.6
Yang, Q.7
-
20
-
-
84859766908
-
A hierarchical model for ordinal matrix factorization
-
U. Paquet, B. Thomson, and O. Winther. A hierarchical model for ordinal matrix factorization. Statistics and Computing, 22(4):945-957, 2012.
-
(2012)
Statistics and Computing
, vol.22
, Issue.4
, pp. 945-957
-
-
Paquet, U.1
Thomson, B.2
Winther, O.3
-
21
-
-
78650134987
-
BPR: Bayesian personalized ranking from implicit feedback
-
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In Uncertainty in Artificial Intelligence, pages 452-461, 2009.
-
(2009)
Uncertainty in Artificial Intelligence
, pp. 452-461
-
-
Rendle, S.1
Freudenthaler, C.2
Gantner, Z.3
Schmidt-Thieme, L.4
-
24
-
-
0000147488
-
Online model selection based on the variational Bayes
-
M. Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7):1649-1681, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1649-1681
-
-
Sato, M.1
-
26
-
-
28844465436
-
Sampling properties of random graphs: The degree distribution
-
M. P. H. Stumpf and C. Wiuf. Sampling properties of random graphs: The degree distribution. Phys. Rev. E, 72:036118, 2005.
-
(2005)
Phys. Rev. e
, vol.72
, pp. 036118
-
-
Stumpf, M.P.H.1
Wiuf, C.2
|