메뉴 건너뛰기




Volumn , Issue , 2014, Pages 65-72

Recommending with an agenda: Active learning of private attributes using matrix factorization

Author keywords

Active learning; Privacy; Recommendations

Indexed keywords

DATA PRIVACY; FACTORIZATION; RECOMMENDER SYSTEMS;

EID: 84908868625     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2645710.2645747     Document Type: Conference Paper
Times cited : (30)

References (30)
  • 1
    • 33750687395 scopus 로고    scopus 로고
    • The personalization privacy paradox: An empirical evaluation of information transparency and the willingness to be proled online for personalization
    • March
    • N. Awad and M. Krishnan. The personalization privacy paradox: An empirical evaluation of information transparency and the willingness to be proled online for personalization. In MIS Quarterly, March 2006.
    • (2006) MIS Quarterly
    • Awad, N.1    Krishnan, M.2
  • 2
    • 43449096369 scopus 로고    scopus 로고
    • Applying link-based classication to label blogs
    • S. Bhagat, I. Rozenbaum, and G. Cormode. Applying link-based classication to label blogs. In WebKDD, 2007.
    • (2007) WebKDD
    • Bhagat, S.1    Rozenbaum, I.2    Cormode, G.3
  • 8
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • S. Dasgupta. Analysis of a greedy active learning strategy. In NIPS, 2005.
    • (2005) NIPS
    • Dasgupta, S.1
  • 9
    • 77956509565 scopus 로고    scopus 로고
    • Adaptive submodularity: A new approach to active learning and stochastic optimization
    • D. Golovin and A. Krause. Adaptive submodularity: A new approach to active learning and stochastic optimization. In COLT, 2010.
    • (2010) COLT
    • Golovin, D.1    Krause, A.2
  • 10
    • 85162026053 scopus 로고    scopus 로고
    • Near-optimal Bayesian active learning with noisy observations
    • D. Golovin, A. Krause, and D. Ray. Near-optimal Bayesian active learning with noisy observations. In NIPS, 2010.
    • (2010) NIPS
    • Golovin, D.1    Krause, A.2    Ray, D.3
  • 13
    • 78649926860 scopus 로고    scopus 로고
    • A matrix factorization technique with trust propagation for recommendation in social networks
    • M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In RecSys, 2010.
    • (2010) RecSys
    • Jamali, M.1    Ester, M.2
  • 14
    • 84983590151 scopus 로고    scopus 로고
    • Making decisions about privacy: Information disclosure in context-aware recommender systems
    • B. Knijnenburg and A. Kobsa. Making decisions about privacy: Information disclosure in context-aware recommender systems. ACM Trans on Intelligent Interactive Systems, 2013.
    • (2013) ACM Trans on Intelligent Interactive Systems
    • Knijnenburg, B.1    Kobsa, A.2
  • 15
    • 84900461906 scopus 로고    scopus 로고
    • Let's do it at my place instead? Attitudinal and behavioral study of privacy in client-side personalization
    • A. Kobsa, B. Knijnenburg, and B. Livshits. Let's do it at my place instead? attitudinal and behavioral study of privacy in client-side personalization. In CHI, 2014.
    • (2014) CHI
    • Kobsa, A.1    Knijnenburg, B.2    Livshits, B.3
  • 16
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In KDD, 2008.
    • (2008) KDD
    • Koren, Y.1
  • 17
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 2009.
    • (2009) Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 18
    • 84876061994 scopus 로고    scopus 로고
    • Private traits and attributes are predictable from digital records of human behavior
    • M. Kosinski, D. Stillwell, and T. Graepel. Private traits and attributes are predictable from digital records of human behavior. PNAS, 2013.
    • (2013) PNAS
    • Kosinski, M.1    Stillwell, D.2    Graepel, T.3
  • 19
    • 84867365565 scopus 로고    scopus 로고
    • Finding a needle in a haystack of reviews: Cold-start context-based recommender system. In
    • A. Levi, O. Mokryn, C. Diot, and N. Taft. Finding a needle in a haystack of reviews: Cold-start context-based recommender system. In ACM RecSys, 2012.
    • (2012) ACM RecSys
    • Levi, A.1    Mokryn, O.2    Diot, C.3    Taft, N.4
  • 20
    • 77950886667 scopus 로고    scopus 로고
    • You are who you know: Inferring user proles in Online Social Networks
    • A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who you know: Inferring user proles in Online Social Networks. In WSDM, 2010.
    • (2010) WSDM
    • Mislove, A.1    Viswanath, B.2    Gummadi, K.P.3    Druschel, P.4
  • 21
    • 77956502504 scopus 로고    scopus 로고
    • Implicit regularization in variational bayesian matrix factorization
    • S. Nakajima and M. Sugiyama. Implicit regularization in variational bayesian matrix factorization. ICML, 2010.
    • (2010) ICML
    • Nakajima, S.1    Sugiyama, M.2
  • 22
    • 84876190311 scopus 로고    scopus 로고
    • Robust de-anonymization of large sparse datasets
    • A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. IEEE SSP, 2008.
    • (2008) IEEE SSP
    • Narayanan, A.1    Shmatikov, V.2
  • 25
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 27
    • 0000905616 scopus 로고
    • Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix
    • J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Annals of Mathematical Statistics, 20:621, 1949.
    • (1949) Annals of Mathematical Statistics , vol.20 , pp. 621
    • Sherman, J.1    Morrison, W.J.2
  • 28
    • 84866005768 scopus 로고    scopus 로고
    • Active learning for online bayesian matrix factorization
    • J. Silva and L. Carin. Active learning for online bayesian matrix factorization. KDD, 2012.
    • (2012) KDD
    • Silva, J.1    Carin, L.2
  • 29
    • 84977886950 scopus 로고    scopus 로고
    • Active learning and search on low-rank matrices
    • D. J. Sutherland, B. Poczos, and J. Schneider. Active learning and search on low-rank matrices. In KDD, 2013.
    • (2013) KDD
    • Sutherland, D.J.1    Poczos, B.2    Schneider, J.3
  • 30
    • 84867394997 scopus 로고    scopus 로고
    • Blurme: Inferring and obfuscating user gender based on ratings. In
    • U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft. Blurme: Inferring and obfuscating user gender based on ratings. In ACM RecSys, 2012.
    • (2012) ACM RecSys
    • Weinsberg, U.1    Bhagat, S.2    Ioannidis, S.3    Taft, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.