메뉴 건너뛰기




Volumn , Issue , 2012, Pages 325-333

Active learning for online bayesian matrix factorization

Author keywords

matrix factorization; online learning

Indexed keywords

ACTIVE LEARNING; BAYESIAN APPROACHES; COLLABORATIVE FILTERING; COMPUTATIONAL EFFORT; COMPUTATIONALLY EFFICIENT; DATA SETS; ESTIMATION QUALITY; FUTURE OBSERVATIONS; MATRIX ELEMENTS; MATRIX FACTORIZATIONS; MODEL INFERENCE; MUTUAL INFORMATIONS; NEAR-OPTIMAL ALGORITHMS; ON-LINE SETTING; ONLINE LEARNING; ONLINE MATRIX; STATISTICAL MODELS; SUBMODULARITY; VARIATIONAL BAYES;

EID: 84866005768     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339584     Document Type: Conference Paper
Times cited : (38)

References (17)
  • 2
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix prize challenge
    • R. Bell and Y. Koren. Lessons from the Netflix prize challenge. ACM SIGKDD Explorations Newsletter, 9(2):75-79, 2007.
    • (2007) ACM SIGKDD Explorations Newsletter , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.1    Koren, Y.2
  • 3
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. Information Theory, IEEE Transactions on, 56(5):2053-2080, 2010.
    • (2010) Information Theory, IEEE Transactions on , vol.56 , Issue.5 , pp. 2053-2080
    • Candès, E.1    Tao, T.2
  • 8
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
    • A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9:235-284, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 13
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions
    • G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14(1):265-294, 1978.
    • (1978) Mathematical Programming , vol.14 , Issue.1 , pp. 265-294
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 14
    • 38049188186 scopus 로고    scopus 로고
    • Principal component analysis for large scale problems with lots of missing values
    • T. Raiko, A. Ilin, and J. Karhunen. Principal component analysis for large scale problems with lots of missing values. Machine Learning: ECML 2007, pages 691-698, 2007.
    • (2007) Machine Learning: ECML 2007 , pp. 691-698
    • Raiko, T.1    Ilin, A.2    Karhunen, J.3
  • 17
    • 0000147488 scopus 로고    scopus 로고
    • Online model selection based on the variational Bayes
    • M. Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7):1649-1681, 2001.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1649-1681
    • Sato, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.