-
3
-
-
77951528523
-
The power of convex relaxation: Near-optimal matrix completion
-
E. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. Information Theory, IEEE Transactions on, 56(5):2053-2080, 2010.
-
(2010)
Information Theory, IEEE Transactions on
, vol.56
, Issue.5
, pp. 2053-2080
-
-
Candès, E.1
Tao, T.2
-
4
-
-
84883066586
-
The Yahoo! Music Dataset and KDD-Cup'11
-
G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Yahoo! Music Dataset and KDD-Cup'11. In ACM International Conference on Knowledge Discovery and Data Mining (KDD), KDD Cup Workshop, 2011.
-
ACM International Conference on Knowledge Discovery and Data Mining (KDD), KDD Cup Workshop, 2011
-
-
Dror, G.1
Koenigstein, N.2
Koren, Y.3
Weimer, M.4
-
8
-
-
41549146576
-
Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
-
A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9:235-284, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
9
-
-
85162012758
-
Practical large-scale optimization for max-norm regularization
-
J. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and J. Tropp. Practical large-scale optimization for max-norm regularization. Advances in Neural Information Processing Systems (NIPS), 23:1297-1305, 2010.
-
(2010)
Advances in Neural Information Processing Systems (NIPS)
, vol.23
, pp. 1297-1305
-
-
Lee, J.1
Recht, B.2
Salakhutdinov, R.3
Srebro, N.4
Tropp, J.5
-
11
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11:19-60, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
13
-
-
0000095809
-
An analysis of approximations for maximizing submodular set functions
-
G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 14(1):265-294, 1978.
-
(1978)
Mathematical Programming
, vol.14
, Issue.1
, pp. 265-294
-
-
Nemhauser, G.1
Wolsey, L.2
Fisher, M.3
-
14
-
-
38049188186
-
Principal component analysis for large scale problems with lots of missing values
-
T. Raiko, A. Ilin, and J. Karhunen. Principal component analysis for large scale problems with lots of missing values. Machine Learning: ECML 2007, pages 691-698, 2007.
-
(2007)
Machine Learning: ECML 2007
, pp. 691-698
-
-
Raiko, T.1
Ilin, A.2
Karhunen, J.3
-
15
-
-
33846519849
-
Building blocks for variational Bayesian learning of latent variable models
-
T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building blocks for variational Bayesian learning of latent variable models. Journal of Machine Learning Research, 8:155-201, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 155-201
-
-
Raiko, T.1
Valpola, H.2
Harva, M.3
Karhunen, J.4
-
17
-
-
0000147488
-
Online model selection based on the variational Bayes
-
M. Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7):1649-1681, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1649-1681
-
-
Sato, M.1
|