메뉴 건너뛰기




Volumn , Issue , 2010, Pages 815-822

Implicit regularization in variational Bayesian matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN; HYPER-PARAMETERS; IDENTIFIABILITY; LOW-RANK MATRICES; MATRIX FACTORIZATIONS; MAXIMUM A POSTERIORI; TARGET MATRICES; VARIATIONAL BAYESIAN;

EID: 77956502504     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (23)
  • 6
    • 84949161149 scopus 로고
    • Stein's estimation rule and its competitors-An empirical Bayes approach
    • Efron, B., & Morris, C. (1973). Stein's Estimation Rule and Its Competitors-An Empirical Bayes Approach. Journal of the American Statistical Association, 68, 117-130.
    • (1973) Journal of the American Statistical Association , vol.68 , pp. 117-130
    • Efron, B.1    Morris, C.2
  • 7
    • 77954576158 scopus 로고    scopus 로고
    • Funk, S. (2006). Try this at home. http://sifter.org/∼simon/journal/ 20061211.html.
    • (2006) Try This at Home
    • Funk, S.1
  • 10
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimation problems
    • Series A, Mathematical and Physical Sciences
    • Jeffreys, H. (1946). An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (pp. 453-461).
    • (1946) Proceedings of the Royal Society of London , pp. 453-461
    • Jeffreys, H.1
  • 13
    • 34247210751 scopus 로고    scopus 로고
    • Variational Bayes solution of linear neural networks and its generalization performance
    • Nakajima, S., & Watanabe, S. (2007). Variational Bayes Solution of Linear Neural Networks and its Generalization Performance. Neural Computation, 19, 1112-1153.
    • (2007) Neural Computation , vol.19 , pp. 1112-1153
    • Nakajima, S.1    Watanabe, S.2
  • 20
    • 33646348720 scopus 로고    scopus 로고
    • Stochastic complexities of Gaussian mixtures in variational Bayesian approximation
    • Watanabe, K., & Watanabe, S. (2006). Stochastic Complexities of Gaussian Mixtures in Variational Bayesian Approximation. Journal of Machine Learning Research, 7, 625-644. (Pubitemid 43668112)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 625-644
    • Watanabe, K.1    Watanabe, S.2
  • 21
    • 0035316373 scopus 로고    scopus 로고
    • Algebraic analysis for nonidentifiable learning machines
    • DOI 10.1162/089976601300014402
    • Watanabe, S. (2001). Algebraic Analysis for Nonidentifiable Learning Machines. Neural Computation, 13, 899-933. (Pubitemid 33594310)
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 899-933
    • Watanabe, S.1
  • 23
    • 0742324924 scopus 로고    scopus 로고
    • Singularities in mixture models and upper bounds of stochastic complexity
    • Yamazaki, K., & Watanabe, S. (2003). Singularities in Mixture Models and Upper Bounds of Stochastic Complexity. Neural Networks, 16, 1029-1038.
    • (2003) Neural Networks , vol.16 , pp. 1029-1038
    • Yamazaki, K.1    Watanabe, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.