메뉴 건너뛰기




Volumn 24, Issue 4, 2011, Pages 658-665

Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM

Author keywords

Geologic prediction; Hidden Markov Model; Neural network; Particle Filter; Tunneling

Indexed keywords

APPROXIMATE INFERENCE; DESIGN AND CONSTRUCTION; DRAINAGE WATER; GENERAL MODEL; GEOLOGIC INFORMATION; GEOLOGIC PREDICTION; GEOLOGICAL PARAMETERS; GROUND CONDITIONS; HMM MODELS; PARTICLE FILTER; PRIMARY SOURCES; PROBABILISTIC DESCRIPTIONS; PROBABILISTIC PREDICTION; TUNNEL GEOLOGY; TUNNELING; UNDERGROUND TUNNELS;

EID: 79953662678     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2011.02.010     Document Type: Article
Times cited : (51)

References (36)
  • 2
    • 46449108846 scopus 로고    scopus 로고
    • Prediction of geology hazardous zones in front of a tunnel faces using TSP-203 and artificial neural network
    • A. Alimoradi, M. Ali, N. Reza, Z.S. Mojtaba, and E. Fshin Prediction of geology hazardous zones in front of a tunnel faces using TSP-203 and artificial neural network Tunnelling and Underground Space Technology 23 6 2008 711 717
    • (2008) Tunnelling and Underground Space Technology , vol.23 , Issue.6 , pp. 711-717
    • Alimoradi, A.1    Ali, M.2    Reza, N.3    Mojtaba, Z.S.4    Fshin, E.5
  • 3
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking
    • 2002
    • Arulampalam, S., Maskell, N.G., Clapp, T., 2002. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. In: IEEE Transactions on Signal Processing, vol. 50(2), pp. 174188.
    • IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, N.G.2    Clapp, T.3
  • 4
    • 0003742102 scopus 로고
    • Ph.D. Thesis, Department of Civil Engineering, Massachusetts Institute of Technology
    • Baecher, G.B., 1972. Site exploration: a probabilistic approach. Ph.D. Thesis, Department of Civil Engineering, Massachusetts Institute of Technology.
    • (1972) Site Exploration: A Probabilistic Approach
    • Baecher, G.B.1
  • 5
    • 0043265522 scopus 로고
    • Master's Thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
    • Chan, M.H., 1981. A geological prediction and updating model in tunneling. Masters Thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
    • (1981) A Geological Prediction and Updating Model in Tunneling
    • Chan, M.H.1
  • 6
    • 84886406370 scopus 로고    scopus 로고
    • Reliability of geological exploration methods during construction of the Hsuehshan tunnel
    • P.S. Chang, and C.W. Yu Reliability of geological exploration methods during construction of the Hsuehshan tunnel World Long Tunnels 2005
    • (2005) World Long Tunnels
    • Chang, P.S.1    Yu, C.W.2
  • 7
    • 70349696375 scopus 로고    scopus 로고
    • Prediction method of RBF neural network for deformation monitoring
    • H. Chen, and G. Wang Prediction method of RBF neural network for deformation monitoring Journal of Geomatics 34 4 2009 17 18
    • (2009) Journal of Geomatics , vol.34 , Issue.4 , pp. 17-18
    • Chen, H.1    Wang, G.2
  • 8
    • 79953650749 scopus 로고    scopus 로고
    • FSTT: French Society for Trenchless Technology Microtunneling and Horizontal Drilling
    • Hermes Science Publishing Ltd
    • FSTT: French Society for Trenchless Technology Microtunneling and Horizontal Drilling 2004 Hermes Science Publishing Ltd
    • (2004) Microtunneling and Horizontal Drilling
  • 10
    • 0033341969 scopus 로고
    • Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face
    • T. Inzaki, H. Isahai, S. Kawamura, T. Kurashami, and H. Hayashi Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face Leading Edge 12 1992 1429 1431
    • (1992) Leading Edge , vol.12 , pp. 1429-1431
    • Inzaki, T.1    Isahai, H.2    Kawamura, S.3    Kurashami, T.4    Hayashi, H.5
  • 13
    • 67651102803 scopus 로고    scopus 로고
    • Prediction of ground subsidence in Samcheok city, Korea using artificial neural networks and GIS
    • K.-D. Kim, S. Lee, and H.-J. Oh Prediction of ground subsidence in Samcheok city, Korea using artificial neural networks and GIS Environmental Geology 58 1 2009 61 70
    • (2009) Environmental Geology , vol.58 , Issue.1 , pp. 61-70
    • Kim, K.-D.1    Lee, S.2    Oh, H.-J.3
  • 14
    • 0036541764 scopus 로고    scopus 로고
    • Fuzzy rule-based expert system for short-range seismic prediction
    • DOI 10.1016/S0098-3004(01)00054-1, PII S0098300401000541
    • C.D. Klose Fuzzy rule-based expert system for short range seismic prediction Computers and Geosciences 28 3 2002 377 386 (Pubitemid 34495192)
    • (2002) Computers and Geosciences , vol.28 , Issue.3 , pp. 377-386
    • Klose, C.D.1
  • 15
    • 33748552682 scopus 로고    scopus 로고
    • Self-organizing maps for geoscientific data analysis: Geological interpretation of multidimensional geophysical data
    • DOI 10.1007/s10596-006-9022-x
    • C.D. Klose Self-organizing maps for geo-scientific data analysis: geological interpretation of multidimensional geophysical data Computational Geosciences 10 3 2006 265 277 (Pubitemid 44363981)
    • (2006) Computational Geosciences , vol.10 , Issue.3 , pp. 265-277
    • Klose, C.D.1
  • 17
    • 60649117747 scopus 로고    scopus 로고
    • Stochastic simulation and risk analysis of water tunnel TBM construction scheduling based on geologic prediction using Markov process
    • D.H. Liu, Y.Q. Zhou, S. Wang, and Y.L. Zhang Stochastic simulation and risk analysis of water tunnel TBM construction scheduling based on geologic prediction using Markov process Xitong Fangzhen Xuebao/Journal of System Simulation 21 2 2009 558 562
    • (2009) Xitong Fangzhen Xuebao/Journal of System Simulation , vol.21 , Issue.2 , pp. 558-562
    • Liu, D.H.1    Zhou, Y.Q.2    Wang, S.3    Zhang, Y.L.4
  • 18
    • 72949093550 scopus 로고    scopus 로고
    • The application of hidden Markov model in classifying novice and experienced drivers by driving behavioral features
    • Lu, Y., Xianghong, S., Yan, G., 2009. The application of hidden Markov model in classifying novice and experienced drivers by driving behavioral features. In: International Conference on Transportation Engineering, pp. 31603165.
    • (2009) International Conference on Transportation Engineering , pp. 3160-3165
    • Lu, Y.1    Xianghong, S.2    Yan, G.3
  • 22
    • 3042796444 scopus 로고    scopus 로고
    • Analytical methods to reduce uncertainty in tunnel construction projects
    • DOI 10.1139/l03-105
    • J.Y Riwanpura, S.M AbouRizk, and M. Allouche Analytical methods to reduce uncertainty in tunnel construction project Canadian Journal of Civil Engineering 31 2 2003 345 360 (Pubitemid 38861285)
    • (2004) Canadian Journal of Civil Engineering , vol.31 , Issue.2 , pp. 345-360
    • Ruwanpura, J.Y.1    AbouRizk, S.M.2    Allouche, M.3
  • 23
    • 42949166273 scopus 로고    scopus 로고
    • Artificial neural networks analysis of Sao Paulo subway tunnel settlement data
    • M. Santos Jr., and B.C. Tarćsio Artificial neural networks analysis of Sao Paulo subway tunnel settlement data Tunneling and Underground Space Technology 23 6 2008 481 491
    • (2008) Tunneling and Underground Space Technology , vol.23 , Issue.6 , pp. 481-491
    • Santos Jr., M.1    Tarćsio, B.C.2
  • 24
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • M. Shahin, M.B. Jaksa, and H.R. Maier Artificial neural network applications in geotechnical engineering Australian Geomechanics 36 1 2001 49 62
    • (2001) Australian Geomechanics , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.1    Jaksa, M.B.2    Maier, H.R.3
  • 25
    • 79151480950 scopus 로고    scopus 로고
    • Master's Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
    • Sutanto, A., 2008. Geologic prediction model with real time Bayesian series analysis. Masters Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    • (2008) Geologic Prediction Model with Real Time Bayesian Series Analysis
    • Sutanto, A.1
  • 27
    • 10344239884 scopus 로고    scopus 로고
    • Method of predicting tunnel deformation based on support vector machines
    • Z.X Tian, C.S. Qiao, W.Y. Teng, and K.Y. Liu Method of predicting tunnel deformation based on support vector machines China Railway Science 25 1 2004 86 90
    • (2004) China Railway Science , vol.25 , Issue.1 , pp. 86-90
    • Tian, Z.X.1    Qiao, C.S.2    Teng, W.Y.3    Liu, K.Y.4
  • 28
    • 0037466501 scopus 로고    scopus 로고
    • A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis
    • DOI 10.1016/S0022-1694(02)00411-0
    • M. Thyer, and G. Kuczera A hidden Markov model for modeling long-term persistence in multi-site rainfall time series. Real data analysis Journal of Hydrology 275 12 2003 27 48 (Pubitemid 36429599)
    • (2003) Journal of Hydrology , vol.275 , Issue.1-2 , pp. 27-48
    • Thyer, M.1    Kuczera, G.2
  • 30
    • 79953670370 scopus 로고    scopus 로고
    • Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
    • Wei, O.Y., 2007. Study of productivities of pipe-jacking construction. Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    • (2007) Study of Productivities of Pipe-jacking Construction
    • Wei, O.Y.1
  • 34
    • 79953670826 scopus 로고    scopus 로고
    • Applications of three dimensional geological models to the construction of the Hsuehshan tunnel
    • Yu, C.W., 2005. Applications of three dimensional geological models to the construction of the Hsuehshan tunnel. World Long Tunnel.
    • (2005) World Long Tunnel
    • Yu, C.W.1
  • 35
    • 42549113447 scopus 로고    scopus 로고
    • A forecasting method for tunnel surrounding rock deformation using RBF neural network
    • J.Y Zang, S.Z. Feng, and D.H. Liu A forecasting method for tunnel surrounding rock deformation using RBF neural network Engineering Science 7 10 2005 87 90
    • (2005) Engineering Science , vol.7 , Issue.10 , pp. 87-90
    • Zang, J.Y.1    Feng, S.Z.2    Liu, D.H.3
  • 36
    • 16644370277 scopus 로고    scopus 로고
    • Predicting the surrounding deformations of tunnel using support vector machine
    • H.B. Zhao Predicting the surrounding deformations of tunnel using support vector machine Chinese Journal of Rock Mechanics and Engineering 24 4 2004 649 652
    • (2004) Chinese Journal of Rock Mechanics and Engineering , vol.24 , Issue.4 , pp. 649-652
    • Zhao, H.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.