메뉴 건너뛰기




Volumn 134, Issue , 2015, Pages 19-31

A particle filtering and kernel smoothing-based approach for new design component prognostics

Author keywords

Battery; Kernel smoothing; Parameter estimation; Particle filtering; Prognostics; Remaining useful life

Indexed keywords

FORECASTING; LITHIUM-ION BATTERIES; MONTE CARLO METHODS; SYSTEMS ENGINEERING;

EID: 84908463816     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2014.10.003     Document Type: Article
Times cited : (103)

References (64)
  • 1
    • 84893538580 scopus 로고    scopus 로고
    • Prognostics and health management of industrial equipment
    • E. Zio Prognostics and health management of industrial equipment Diagn Progn Eng Syst: Methods Tech 2012 333 356
    • (2012) Diagn Progn Eng Syst: Methods Tech , pp. 333-356
    • Zio, E.1
  • 2
    • 79955584653 scopus 로고    scopus 로고
    • Remaining useful life estimation - A review on the statistical data driven approaches
    • X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou Remaining useful life estimation - a review on the statistical data driven approaches Eur J Oper Res 213 2011 1 14
    • (2011) Eur J Oper Res , vol.213 , pp. 1-14
    • Si, X.-S.1    Wang, W.2    Hu, C.-H.3    Zhou, D.-H.4
  • 3
    • 79953899252 scopus 로고    scopus 로고
    • Prognostic modelling options for remaining useful life estimation by industry
    • J. Sikorska, M. Hodkiewicz, and L. Ma Prognostic modelling options for remaining useful life estimation by industry Mech Syst Signal Process 25 2011 1803 1836
    • (2011) Mech Syst Signal Process , vol.25 , pp. 1803-1836
    • Sikorska, J.1    Hodkiewicz, M.2    Ma, L.3
  • 4
    • 79959311588 scopus 로고    scopus 로고
    • Economic analysis of canary-based prognostics and health management
    • W.B. Wang, and M. Pecht Economic analysis of canary-based prognostics and health management IEEE Trans Ind Electron 58 2011 3077 3089
    • (2011) IEEE Trans Ind Electron , vol.58 , pp. 3077-3089
    • Wang, W.B.1    Pecht, M.2
  • 5
    • 84908398201 scopus 로고    scopus 로고
    • Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
    • J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel Prognostics and health management design for rotary machinery systems-reviews, methodology and applications Mech Syst Signal Process 2013
    • (2013) Mech Syst Signal Process
    • Lee, J.1    Wu, F.2    Zhao, W.3    Ghaffari, M.4    Liao, L.5    Siegel, D.6
  • 7
    • 84862795692 scopus 로고    scopus 로고
    • A data-model-fusion prognostic framework for dynamic system state forecasting
    • J. Liu, W. Wang, F. Ma, Y. Yang, and C. Yang A data-model-fusion prognostic framework for dynamic system state forecasting Eng Appl Artif Intell 25 2012 814 823
    • (2012) Eng Appl Artif Intell , vol.25 , pp. 814-823
    • Liu, J.1    Wang, W.2    Ma, F.3    Yang, Y.4    Yang, C.5
  • 8
    • 84874705806 scopus 로고    scopus 로고
    • Model-based and data-driven prognostics under different available information
    • P. Baraldi, F. Cadini, F. Mangili, and E. Zio Model-based and data-driven prognostics under different available information Probab Eng Mech 32 2013 66 79
    • (2013) Probab Eng Mech , vol.32 , pp. 66-79
    • Baraldi, P.1    Cadini, F.2    Mangili, F.3    Zio, E.4
  • 9
    • 84879114868 scopus 로고    scopus 로고
    • Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries
    • M.E. Orchard, P. Hevia-Koch, B. Zhang, and L. Tang Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries IEEE Trans Ind Electron 60 2013 5260 5269
    • (2013) IEEE Trans Ind Electron , vol.60 , pp. 5260-5269
    • Orchard, M.E.1    Hevia-Koch, P.2    Zhang, B.3    Tang, L.4
  • 10
    • 80052036080 scopus 로고    scopus 로고
    • Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine
    • M. Han, and Y. Zhao Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine Expert Syst Appl 38 2011 14786 14798
    • (2011) Expert Syst Appl , vol.38 , pp. 14786-14798
    • Han, M.1    Zhao, Y.2
  • 11
    • 84861603437 scopus 로고    scopus 로고
    • Combining relevance vector machines and exponential regression for bearing residual life estimation
    • F. Di Maio, K.L. Tsui, and E. Zio Combining relevance vector machines and exponential regression for bearing residual life estimation Mech Syst Signal Process 31 2012 405 427
    • (2012) Mech Syst Signal Process , vol.31 , pp. 405-427
    • Di Maio, F.1    Tsui, K.L.2    Zio, E.3
  • 12
    • 84879122078 scopus 로고    scopus 로고
    • Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA
    • W.-Y. Chang Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA Int J Electr Power 53 2013 603 611
    • (2013) Int J Electr Power , vol.53 , pp. 603-611
    • Chang, W.-Y.1
  • 13
    • 84861752964 scopus 로고    scopus 로고
    • Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks
    • A. Eddahech, O. Briat, N. Bertrand, J.-Y. Delétage, and J.-M. Vinassa Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks Int J Electr Power 42 2012 487 494
    • (2012) Int J Electr Power , vol.42 , pp. 487-494
    • Eddahech, A.1    Briat, O.2    Bertrand, N.3    Delétage, J.-Y.4    Vinassa, J.-M.5
  • 14
    • 0036073426 scopus 로고    scopus 로고
    • A model to predict the residual life of rolling element bearings given monitored condition information to date
    • W. Wang A model to predict the residual life of rolling element bearings given monitored condition information to date IMA J Manag Math 13 2002 3 16
    • (2002) IMA J Manag Math , vol.13 , pp. 3-16
    • Wang, W.1
  • 15
    • 84906704591 scopus 로고    scopus 로고
    • A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring
    • Z. Wang, C. Hu, W. Wang, Z. Zhou, and X. Si A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring Reliab Eng Syst Saf 132 2014 186 195
    • (2014) Reliab Eng Syst Saf , vol.132 , pp. 186-195
    • Wang, Z.1    Hu, C.2    Wang, W.3    Zhou, Z.4    Si, X.5
  • 16
    • 84873994509 scopus 로고    scopus 로고
    • Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles
    • D. Andre, A. Nuhic, T. Soczka-Guth, and D.U. Sauer Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles Eng Appl Artif Intell 26 2013 951 961
    • (2013) Eng Appl Artif Intell , vol.26 , pp. 951-961
    • Andre, D.1    Nuhic, A.2    Soczka-Guth, T.3    Sauer, D.U.4
  • 17
    • 84893182881 scopus 로고    scopus 로고
    • Improved extended Kalman filter for state of charge estimation of battery pack
    • S. Sepasi, R. Ghorbani, and B.Y. Liaw Improved extended Kalman filter for state of charge estimation of battery pack J Power Sources 255 2014 368 376
    • (2014) J Power Sources , vol.255 , pp. 368-376
    • Sepasi, S.1    Ghorbani, R.2    Liaw, B.Y.3
  • 18
    • 84880566304 scopus 로고    scopus 로고
    • A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter
    • S. Sepasi, R. Ghorbani, and B.Y. Liaw A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter J Power Sources 245 2014 337 344
    • (2014) J Power Sources , vol.245 , pp. 337-344
    • Sepasi, S.1    Ghorbani, R.2    Liaw, B.Y.3
  • 19
    • 84872343379 scopus 로고    scopus 로고
    • Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data
    • P. Baraldi, F. Mangili, and E. Zio Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data Reliab Eng Syst Saf 112 2013 94 108
    • (2013) Reliab Eng Syst Saf , vol.112 , pp. 94-108
    • Baraldi, P.1    Mangili, F.2    Zio, E.3
  • 21
    • 78650831915 scopus 로고    scopus 로고
    • Particle filtering prognostic estimation of the remaining useful life of nonlinear components
    • E. Zio, and G. Peloni Particle filtering prognostic estimation of the remaining useful life of nonlinear components Reliab Eng Syst Saf 96 2011 403 409
    • (2011) Reliab Eng Syst Saf , vol.96 , pp. 403-409
    • Zio, E.1    Peloni, G.2
  • 22
    • 84879839833 scopus 로고    scopus 로고
    • Remaining useful life prediction of lithium-ion battery with unscented particle filter technique
    • Q. Miao, L. Xie, H. Cui, W. Liang, and M. Pecht Remaining useful life prediction of lithium-ion battery with unscented particle filter technique Microelectron Reliab 53 2013 805 810
    • (2013) Microelectron Reliab , vol.53 , pp. 805-810
    • Miao, Q.1    Xie, L.2    Cui, H.3    Liang, W.4    Pecht, M.5
  • 23
    • 80053570039 scopus 로고    scopus 로고
    • Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method
    • W. He, N. Williard, M. Osterman, and M. Pecht Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method J Power Sources 196 2011 10314 10321
    • (2011) J Power Sources , vol.196 , pp. 10314-10321
    • He, W.1    Williard, N.2    Osterman, M.3    Pecht, M.4
  • 24
    • 84875860422 scopus 로고    scopus 로고
    • Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab
    • D. An, J.-H. Choi, and N.H. Kim Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab Reliab Eng Syst Saf 115 2013 161 169
    • (2013) Reliab Eng Syst Saf , vol.115 , pp. 161-169
    • An, D.1    Choi, J.-H.2    Kim, N.H.3
  • 25
    • 84875494504 scopus 로고    scopus 로고
    • On simultaneous on-line state and parameter estimation in non-linear state-space models
    • A. Tulsyan, B. Huang, R. Bhushan Gopaluni, and J. Fraser Forbes On simultaneous on-line state and parameter estimation in non-linear state-space models J Process Control 23 2013 516 526
    • (2013) J Process Control , vol.23 , pp. 516-526
    • Tulsyan, A.1    Huang, B.2    Bhushan Gopaluni, R.3    Fraser Forbes, J.4
  • 27
    • 84875870469 scopus 로고    scopus 로고
    • Model adaptation for prognostics in a particle filtering framework
    • B. Saha, and K. Goebel Model adaptation for prognostics in a particle filtering framework Int J Progn Health Manag 2 2011 10
    • (2011) Int J Progn Health Manag , vol.2 , pp. 10
    • Saha, B.1    Goebel, K.2
  • 29
    • 84857361309 scopus 로고    scopus 로고
    • Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
    • J. Sun, H. Zuo, W. Wang, and M.G. Pecht Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance Mech Syst Signal Process 28 2012 585 596
    • (2012) Mech Syst Signal Process , vol.28 , pp. 585-596
    • Sun, J.1    Zuo, H.2    Wang, W.3    Pecht, M.G.4
  • 30
    • 23844456306 scopus 로고    scopus 로고
    • Nonlinear filters: Beyond the Kalman filter
    • F. Daum Nonlinear filters: beyond the Kalman filter IEEE Aerosp Electron Syst Mag 20 2005 57 69
    • (2005) IEEE Aerosp Electron Syst Mag , vol.20 , pp. 57-69
    • Daum, F.1
  • 31
    • 79957632450 scopus 로고    scopus 로고
    • Outer feedback correction loops in particle filtering-based prognostic algorithms: Statistical performance comparison
    • M. Orchard, F. Tobar, and G. Vachtsevanos Outer feedback correction loops in particle filtering-based prognostic algorithms: statistical performance comparison Stud Inform Control 18 2009 295 304
    • (2009) Stud Inform Control , vol.18 , pp. 295-304
    • Orchard, M.1    Tobar, F.2    Vachtsevanos, G.3
  • 32
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu On sequential Monte Carlo sampling methods for Bayesian filtering Stat Comput 10 2000 197 208
    • (2000) Stat Comput , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 34
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking IEEE Trans Signal Process 50 2002 174 188
    • (2002) IEEE Trans Signal Process , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 35
    • 44649107771 scopus 로고    scopus 로고
    • An overview of existing methods and recent advances in sequential Monte Carlo
    • O. Cappé, S.J. Godsill, and E. Moulines An overview of existing methods and recent advances in sequential Monte Carlo IEEE Proc 95 2007 899 924
    • (2007) IEEE Proc , vol.95 , pp. 899-924
    • Cappé, O.1    Godsill, S.J.2    Moulines, E.3
  • 36
    • 67650718722 scopus 로고    scopus 로고
    • A particle-filtering approach for on-line fault diagnosis and failure prognosis
    • M.E. Orchard, and G.J. Vachtsevanos A particle-filtering approach for on-line fault diagnosis and failure prognosis Trans Inst Meas Control 31 2009 221 246
    • (2009) Trans Inst Meas Control , vol.31 , pp. 221-246
    • Orchard, M.E.1    Vachtsevanos, G.J.2
  • 37
    • 84908460625 scopus 로고    scopus 로고
    • 3 - Information Theoretic Parameter Estimation
    • C. Badong, Z. Yu, H. Jinchun, C. Jose, A2 Principe, Y.Z.J.H. Badong Chen, C.P. Jose, Elsevier Oxford
    • B. Chen, Y. Zhu, J. Hu, and J.C. Principe 3 - Information Theoretic Parameter Estimation C. Badong, Z. Yu, H. Jinchun, C. Jose, A2 Principe, Y.Z.J.H. Badong Chen, C.P. Jose, System parameter identification 2013 Elsevier Oxford 29 60
    • (2013) System Parameter Identification , pp. 29-60
    • Chen, B.1    Zhu, Y.2    Hu, J.3    Principe, J.C.4
  • 38
    • 35548942752 scopus 로고    scopus 로고
    • A maximum likelihood approximation method for Dirichlet's parameter estimation
    • N. Wicker, J. Muller, R.K.R. Kalathur, and O. Poch A maximum likelihood approximation method for Dirichlet's parameter estimation Comput Stat Data Anal 52 2008 1315 1322
    • (2008) Comput Stat Data Anal , vol.52 , pp. 1315-1322
    • Wicker, N.1    Muller, J.2    Kalathur, R.K.R.3    Poch, O.4
  • 39
    • 84883414140 scopus 로고    scopus 로고
    • Parameter estimation in batch process using em algorithm with particle filter
    • Z.G. Zhao, B. Huang, and F. Liu Parameter estimation in batch process using EM algorithm with particle filter Comput. & Chem. Eng. 57 2013 159 172 http://dx.doi.org/10.1016/j.compchemeng.2013.03.024
    • (2013) Comput. & Chem. Eng. , vol.57 , pp. 159-172
    • Zhao, Z.G.1    Huang, B.2    Liu, F.3
  • 40
    • 84875863680 scopus 로고    scopus 로고
    • Online parameter identification for real-time supercapacitor performance estimation in automotive applications
    • A. Eddahech, M. Ayadi, O. Briat, and J.-M. Vinassa Online parameter identification for real-time supercapacitor performance estimation in automotive applications Int J Electr Power 51 2013 162 167
    • (2013) Int J Electr Power , vol.51 , pp. 162-167
    • Eddahech, A.1    Ayadi, M.2    Briat, O.3    Vinassa, J.-M.4
  • 41
    • 79955612833 scopus 로고    scopus 로고
    • A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis
    • Y. Yang, Y. Liao, G. Meng, and J. Lee A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis Expert Syst Appl 38 2011 11311 11320
    • (2011) Expert Syst Appl , vol.38 , pp. 11311-11320
    • Yang, Y.1    Liao, Y.2    Meng, G.3    Lee, J.4
  • 42
    • 84857618397 scopus 로고    scopus 로고
    • Identification of correlated damage parameters under noise and bias using Bayesian inference
    • D. An, J.-H. Choi, and N.H. Kim Identification of correlated damage parameters under noise and bias using Bayesian inference Struct Health Monit 11 2012 293 303
    • (2012) Struct Health Monit , vol.11 , pp. 293-303
    • An, D.1    Choi, J.-H.2    Kim, N.H.3
  • 43
    • 77952954357 scopus 로고    scopus 로고
    • Bayesian mixture modeling approach to account for heterogeneity in speed data
    • B.-J. Park, Y. Zhang, and D. Lord Bayesian mixture modeling approach to account for heterogeneity in speed data Transp Res Part B: Methodol 44 2010 662 673
    • (2010) Transp Res Part B: Methodol , vol.44 , pp. 662-673
    • Park, B.-J.1    Zhang, Y.2    Lord, D.3
  • 46
    • 28244486850 scopus 로고    scopus 로고
    • Bayesian state and parameter estimation of uncertain dynamical systems
    • J. Ching, J.L. Beck, and K.A. Porter Bayesian state and parameter estimation of uncertain dynamical systems Probab Eng Mech 21 2006 81 96
    • (2006) Probab Eng Mech , vol.21 , pp. 81-96
    • Ching, J.1    Beck, J.L.2    Porter, K.A.3
  • 47
    • 84859523377 scopus 로고    scopus 로고
    • Dual particle filters for state and parameter estimation with application to a run-of-mine ore mill
    • L.E. Olivier, B. Huang, and I.K. Craig Dual particle filters for state and parameter estimation with application to a run-of-mine ore mill J Process Control 22 2012 710 717
    • (2012) J Process Control , vol.22 , pp. 710-717
    • Olivier, L.E.1    Huang, B.2    Craig, I.K.3
  • 49
    • 79954842509 scopus 로고    scopus 로고
    • Enhancing particle image tracking performance with a sequential Monte Carlo method: The bootstrap filter
    • S. Shi, and D. Chen Enhancing particle image tracking performance with a sequential Monte Carlo method: the bootstrap filter Flow Meas Instrum 22 2011 190 200
    • (2011) Flow Meas Instrum , vol.22 , pp. 190-200
    • Shi, S.1    Chen, D.2
  • 50
    • 84862787562 scopus 로고    scopus 로고
    • Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters
    • T. Li, T.P. Sattar, and S. Sun Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters Signal Process 92 2012 1637 1645
    • (2012) Signal Process , vol.92 , pp. 1637-1645
    • Li, T.1    Sattar, T.P.2    Sun, S.3
  • 51
    • 84883806596 scopus 로고    scopus 로고
    • Optimal SIR algorithm vs. fully adapted auxiliary particle filter: A non asymptotic analysis
    • Y. Petetin, and F. Desbouvries Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a non asymptotic analysis Stat Comput 23 2013 759 775
    • (2013) Stat Comput , vol.23 , pp. 759-775
    • Petetin, Y.1    Desbouvries, F.2
  • 53
    • 0031294907 scopus 로고    scopus 로고
    • Monte Carlo filter using the genetic algorithm operators
    • T. Higuchi Monte Carlo filter using the genetic algorithm operators J Stat Comput Simulation 59 1997 1 23
    • (1997) J Stat Comput Simulation , vol.59 , pp. 1-23
    • Higuchi, T.1
  • 55
    • 84887081561 scopus 로고    scopus 로고
    • Model-based prognostics with concurrent damage progression processes
    • M.J. Daigle, and K. Goebel Model-based prognostics with concurrent damage progression processes IEEE Trans Syst Man Cybern 43 2013 535 546
    • (2013) IEEE Trans Syst Man Cybern , vol.43 , pp. 535-546
    • Daigle, M.J.1    Goebel, K.2
  • 56
    • 17744380204 scopus 로고    scopus 로고
    • Particle filters for state and parameter estimation in batch processes
    • T. Chen, J. Morris, and E. Martin Particle filters for state and parameter estimation in batch processes J Process Control 15 2005 665 673
    • (2005) J Process Control , vol.15 , pp. 665-673
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 59
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics methods for battery health monitoring using a Bayesian framework
    • B. Saha, K. Goebel, S. Poll, and J. Christophersen Prognostics methods for battery health monitoring using a Bayesian framework IEEE Trans Instrum Meas 58 2009 291 296
    • (2009) IEEE Trans Instrum Meas , vol.58 , pp. 291-296
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 60
    • 79956339515 scopus 로고    scopus 로고
    • A review on prognostics and health monitoring of Li-ion battery
    • J. Zhang, and J. Lee A review on prognostics and health monitoring of Li-ion battery J Power Sources 196 2011 6007 6014
    • (2011) J Power Sources , vol.196 , pp. 6007-6014
    • Zhang, J.1    Lee, J.2
  • 64
    • 84872093306 scopus 로고    scopus 로고
    • Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena
    • B.E. Olivares, C. Munoz, M.E. Orchard, and J.F. Silva Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena IEEE Trans Instrum Meas 62 2013 364 376
    • (2013) IEEE Trans Instrum Meas , vol.62 , pp. 364-376
    • Olivares, B.E.1    Munoz, C.2    Orchard, M.E.3    Silva, J.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.