메뉴 건너뛰기




Volumn 25, Issue 4, 2012, Pages 814-823

A data-model-fusion prognostic framework for dynamic system state forecasting

Author keywords

Failure prognostics; Fault diagnosis; Neural fuzzy systems; Neural networks; Nonlinear prediction; Remaining useful life prediction

Indexed keywords

APPLICATION EXAMPLES; BAYESIAN LEARNING; DATA-DRIVEN; DATA-DRIVEN METHODS; FORECASTING TOOLS; HISTORY DATA; LITHIUM-ION BATTERY; NEURAL FUZZY SYSTEMS; NONLINEAR PREDICTION; PARTICLE FILTERING; PREDICTION MODEL; REMAINING USEFUL LIFE PREDICTIONS; REMAINING USEFUL LIVES; STATE FORECASTING; SYSTEM DEGRADATION; SYSTEM EVOLUTION; SYSTEM STATE; UNKNOWN PARAMETERS;

EID: 84862795692     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2012.02.015     Document Type: Article
Times cited : (181)

References (36)
  • 1
    • 0036411755 scopus 로고    scopus 로고
    • Nonlinear damage models for diagnosis and prognosis in structural dynamic systems
    • D.E. Adams Nonlinear damage models for diagnosis and prognosis in structural dynamic systems Proc. SPIE 4733 2002 180 191
    • (2002) Proc. SPIE , vol.4733 , pp. 180-191
    • Adams, D.E.1
  • 2
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques-case study: River flow forecasting
    • A. Atiya, S. El-Shoura, S. Shaheen, and M. El-Sherif A comparison between neural-network forecasting techniques-case study: river flow forecasting IEEE Trans. Neural Networks 10 1999 402 409
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 402-409
    • Atiya, A.1    El-Shoura, S.2    Shaheen, S.3    El-Sherif, M.4
  • 3
    • 0001590347 scopus 로고
    • The identification of polynomial systems by means of higher order spectra
    • D.R. Brillinger The identification of polynomial systems by means of higher order spectra J. Sound Vib. 12 1970 301 313
    • (1970) J. Sound Vib. , vol.12 , pp. 301-313
    • Brillinger, D.R.1
  • 4
    • 3943070430 scopus 로고    scopus 로고
    • A dynamical systems approach to failure prognosis
    • D. Chelidze, and J.P. Cusumano A dynamical systems approach to failure prognosis J. Vib. Acoust. 126 2004 2 8
    • (2004) J. Vib. Acoust. , vol.126 , pp. 2-8
    • Chelidze, D.1    Cusumano, J.P.2
  • 6
    • 1842482137 scopus 로고    scopus 로고
    • Bearing damage detection via wavelet packet decomposition of the stator current
    • L. Eren, and M.J. Devaney Bearing damage detection via wavelet packet decomposition of the stator current IEEE Trans. Instrum. Meas. 53 2004 431 436
    • (2004) IEEE Trans. Instrum. Meas. , vol.53 , pp. 431-436
    • Eren, L.1    Devaney, M.J.2
  • 7
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman Multivariate adaptive regression splines Ann. Stat. 19 1991 1 141
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 11
    • 34250781030 scopus 로고    scopus 로고
    • Real-time fatigue life estimation in mechanical structures
    • S. Gupta, and A. Ray Real-time fatigue life estimation in mechanical structures Meas. Sci. Technol. 18 2007 1947 1957
    • (2007) Meas. Sci. Technol. , vol.18 , pp. 1947-1957
    • Gupta, S.1    Ray, A.2
  • 13
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J. Jang ANFIS: adaptive-network-based fuzzy inference system IEEE Trans. Syst. Man. Cybern. Part B 23 1993 665 685
    • (1993) IEEE Trans. Syst. Man. Cybern. Part B , vol.23 , pp. 665-685
    • Jang, J.1
  • 14
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Mech. Syst. Signal Process. 20 2006 1483 1510
    • (2006) Mech. Syst. Signal Process. , vol.20 , pp. 1483-1510
    • Jardine, A.1    Lin, D.2    Banjevic, D.3
  • 16
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • J.M. Lee, C.K. Yoo, and I.B. Lee Statistical process monitoring with independent component analysis J. Process Control 14 2004 467 485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 17
    • 33645001792 scopus 로고    scopus 로고
    • Improving signal prediction performance of neural networks through multi-resolution learning approach
    • Y. Liang, and X. Liang Improving signal prediction performance of neural networks through multi-resolution learning approach IEEE Trans. Syst. Man Cybern. Part B 36 2006 341 352
    • (2006) IEEE Trans. Syst. Man Cybern. Part B , vol.36 , pp. 341-352
    • Liang, Y.1    Liang, X.2
  • 19
    • 57049113226 scopus 로고    scopus 로고
    • An extended wavelet spectrum for bearing fault diagnostics
    • J. Liu, W. Wang, and F. Golnaraghi An extended wavelet spectrum for bearing fault diagnostics IEEE Trans. Instrum. Meas. 57 2008 2801 2812
    • (2008) IEEE Trans. Instrum. Meas. , vol.57 , pp. 2801-2812
    • Liu, J.1    Wang, W.2    Golnaraghi, F.3
  • 20
    • 84862787220 scopus 로고    scopus 로고
    • A multi-step predictor with a variable input pattern for system state forecasting
    • J. Liu, W. Wang, and F. Golnaraghi A multi-step predictor with a variable input pattern for system state forecasting Mech. Syst. Signal Process. 2315 2009 86 99
    • (2009) Mech. Syst. Signal Process. , vol.2315 , pp. 86-99
    • Liu, J.1    Wang, W.2    Golnaraghi, F.3
  • 22
    • 76849109288 scopus 로고    scopus 로고
    • A prognostics and health management roadmap for information and electronics-rich systems
    • M. Pecht, and R. Jaai A prognostics and health management roadmap for information and electronics-rich systems Microelectron. Reliab. 50 2010 317 323
    • (2010) Microelectron. Reliab. , vol.50 , pp. 317-323
    • Pecht, M.1    Jaai, R.2
  • 23
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics methods for battery health monitoring using a Bayesian framework
    • B. Saha, K. Goebel, S. Poll, and J. Christophersen Prognostics methods for battery health monitoring using a Bayesian framework IEEE Trans. Instrum. Meas. 58 2009 291 296
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , pp. 291-296
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 26
    • 0000366506 scopus 로고
    • On the theory of bilinear time series models
    • R.T. Subba On the theory of bilinear time series models J. Roy. Stat. Soc. 43 1981 244 255
    • (1981) J. Roy. Stat. Soc. , vol.43 , pp. 244-255
    • Subba, R.T.1
  • 27
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based neural networks (BANNs)
    • M.K. Tiwari, and C. Chatterjee Uncertainty assessment and ensemble flood forecasting using bootstrap based neural networks (BANNs) J. Hydrol. 38 2010 20 33
    • (2010) J. Hydrol. , vol.38 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 28
    • 0000003175 scopus 로고
    • Threshold autoregression, limited cycles and cyclical data
    • H. Tong, and K.S. Lim Threshold autoregression, limited cycles and cyclical data J. Roy. Stat. Soc. 42 1980 245 292
    • (1980) J. Roy. Stat. Soc. , vol.42 , pp. 245-292
    • Tong, H.1    Lim, K.S.2
  • 29
    • 0032643704 scopus 로고    scopus 로고
    • Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
    • P. Tse, and D. Atherton Prediction of machine deterioration using vibration based fault trends and recurrent neural networks J. Vib. Acoust. 121 1999 355 362
    • (1999) J. Vib. Acoust. , vol.121 , pp. 355-362
    • Tse, P.1    Atherton, D.2
  • 31
    • 0141988763 scopus 로고    scopus 로고
    • Wavelet transform with spectral post-processing for enhanced feature extraction
    • C. Wang, and R.X. Gao Wavelet transform with spectral post-processing for enhanced feature extraction IEEE Trans. Instrum. Meas. 52 2003 1296 1301
    • (2003) IEEE Trans. Instrum. Meas. , vol.52 , pp. 1296-1301
    • Wang, C.1    Gao, R.X.2
  • 32
    • 58149502268 scopus 로고    scopus 로고
    • An evolving fuzzy predictor for industrial applications
    • W. Wang, and J. Vrbanek An evolving fuzzy predictor for industrial applications IEEE Trans. Fuzzy Syst. 16 2008 1349 1439
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 1349-1439
    • Wang, W.1    Vrbanek, J.2
  • 33
    • 65749099794 scopus 로고    scopus 로고
    • Application of two non-linear prediction tools to the estimation of tunnel boring machine performance
    • S. Yagiz, C. Gokceoglu, E. Sezer, and S. Iplikci Application of two non-linear prediction tools to the estimation of tunnel boring machine performance Eng. Appl. Artif. Intell. 22 2009 808 814
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 808-814
    • Yagiz, S.1    Gokceoglu, C.2    Sezer, E.3    Iplikci, S.4
  • 34
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • J. Yu, and S.J. Qin Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 54 2008 1811 1829
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 35
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • J. Yu, and S.J. Qin Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 48 2009 8585 8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 36
    • 79958703777 scopus 로고    scopus 로고
    • Localized fisher discriminant analysis based complex chemical process monitoring
    • J. Yu Localized fisher discriminant analysis based complex chemical process monitoring AIChE J. 57 2011 1817 1828
    • (2011) AIChE J. , vol.57 , pp. 1817-1828
    • Yu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.