-
1
-
-
0036475447
-
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
-
Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174-188 (2002).
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.2
, pp. 174-188
-
-
Arulampalam, M.S.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
3
-
-
57849133035
-
Adaptive methods for sequential importance sampling with application to state-space models
-
Cornebise, J., Moulines, É., Olsson, J.: Adaptive methods for sequential importance sampling with application to state-space models. Stat. Comput. 18(4), 461-480 (2008).
-
(2008)
Stat. Comput.
, vol.18
, Issue.4
, pp. 461-480
-
-
Cornebise, J.1
Moulines, É.2
Olsson, J.3
-
4
-
-
0036504051
-
A survey of convergence results on particle filtering methods for practitioners
-
Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50(3), 736-746 (2002).
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.3
, pp. 736-746
-
-
Crisan, D.1
Doucet, A.2
-
6
-
-
80051634791
-
Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a matter of conditional independence
-
Prague, Czech Republic
-
Desbouvries, F., Petetin, Y., Monfrini, E.: Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a matter of conditional independence. In: Proc. IEEE ICASSP, Prague, Czech Republic (2011).
-
(2011)
Proc. IEEE ICASSP
-
-
Desbouvries, F.1
Petetin, Y.2
Monfrini, E.3
-
7
-
-
33746863594
-
Comparison of resampling schemes for particle filtering
-
Zagreb, Croatia
-
Douc, R., Cappé, O., Moulines, É.: Comparison of resampling schemes for particle filtering. In: Proc. of the 4th ISPA, Zagreb, Croatia (2005).
-
(2005)
Proc. Of the 4th ISPA
-
-
Douc, R.1
Cappé, O.2
Moulines, É.3
-
8
-
-
78650790756
-
Optimality of the auxiliary particle filter
-
Douc, R., Moulines, É., Olsson, J.: Optimality of the auxiliary particle filter. Probab. Math. Stat. 29(1), 1-28 (2009).
-
(2009)
Probab. Math. Stat.
, vol.29
, Issue.1
, pp. 1-28
-
-
Douc, R.1
Moulines, É.2
Olsson, J.3
-
9
-
-
0001460136
-
On sequential Monte Carlo sampling methods for Bayesian filtering
-
Doucet, A., Godsill, S. J., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197-208 (2000).
-
(2000)
Stat. Comput.
, vol.10
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.J.2
Andrieu, C.3
-
10
-
-
0003665481
-
-
New York: Springer
-
Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science. Springer, New York (2001a).
-
(2001)
Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science
-
-
Doucet, A.1
de Freitas, N.2
Gordon, N.3
-
11
-
-
0035266886
-
Particle filters for state estimation of jump Markov linear systems
-
Doucet, A., Gordon, N. J., Krishnamurthy, V.: Particle filters for state estimation of jump Markov linear systems. IEEE Trans. Signal Process. 49(3), 613-624 (2001b).
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.3
, pp. 613-624
-
-
Doucet, A.1
Gordon, N.J.2
Krishnamurthy, V.3
-
12
-
-
41549102613
-
Computational methods for complex stochastic systems: a review of some alternatives to MCMC
-
Fearnhead, P.: Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Stat. Comput. 18(2), 151-171 (2008).
-
(2008)
Stat. Comput.
, vol.18
, Issue.2
, pp. 151-171
-
-
Fearnhead, P.1
-
13
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
-
Gordon, N. J., Salmond, D. J., Smith, A. F. M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140(2), 107-113 (1993).
-
(1993)
IEE Proc. F
, vol.140
, Issue.2
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.F.M.3
-
14
-
-
48049091162
-
On resampling algorithms for particle filtering
-
Cambridge, UK
-
Hol, J. D., Schön, T. B., Gustafsson, F.: On resampling algorithms for particle filtering. In: Proc. IEEE NSSPW, Cambridge, UK (2006).
-
(2006)
Proc. IEEE NSSPW
-
-
Hol, J.D.1
Schön, T.B.2
Gustafsson, F.3
-
15
-
-
49349086599
-
A note on the auxiliary particle filter
-
Johansen, A. M., Doucet, A.: A note on the auxiliary particle filter. Stat. Probab. Lett. 78(12), 1498-1504 (2008).
-
(2008)
Stat. Probab. Lett.
, vol.78
, Issue.12
, pp. 1498-1504
-
-
Johansen, A.M.1
Doucet, A.2
-
16
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1-25 (1996).
-
(1996)
J. Comput. Graph. Stat.
, vol.5
, Issue.1
, pp. 1-25
-
-
Kitagawa, G.1
-
17
-
-
84950943564
-
Sequential imputations and bayesian missing data problems
-
Kong, A., Liu, J. S., Wong, W. H.: Sequential imputations and bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278-288 (1994).
-
(1994)
J. Am. Stat. Assoc.
, vol.89
, Issue.425
, pp. 278-288
-
-
Kong, A.1
Liu, J.S.2
Wong, W.H.3
-
18
-
-
0001387339
-
State space and hidden Markov models
-
Monographs on Statistics and Applied Probability, O. E. Barndorff-Nielsen, D. R. Cox, C. Klüppelberg (Eds.), New York: Chapman and Hall/CRC
-
Künsch, H. R.: State space and hidden Markov models. In: Barndorff-Nielsen, O. E., Cox, D. R., Klüppelberg, C. (eds.) Complex Stochastic Systems. Monographs on Statistics and Applied Probability, vol. 87, pp. 109-173. Chapman and Hall/CRC, New York (2001).
-
(2001)
Complex Stochastic Systems
, vol.87
, pp. 109-173
-
-
Künsch, H.R.1
-
19
-
-
30344486983
-
Recursive Monte Carlo filters: algorithms and theoretical analysis
-
Künsch, H.: Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Stat. 33(5), 1983-2021 (2005).
-
(2005)
Ann. Stat.
, vol.33
, Issue.5
, pp. 1983-2021
-
-
Künsch, H.1
-
20
-
-
21344458535
-
Metropolized independent sampling with comparisons to rejection sampling and importance sampling
-
Liu, J. S.: Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat. Comput. 6, 113-119 (1996).
-
(1996)
Stat. Comput.
, vol.6
, pp. 113-119
-
-
Liu, J.S.1
-
21
-
-
84950943371
-
Blind deconvolution via sequential imputation
-
Liu, J. S., Chen, R.: Blind deconvolution via sequential imputation. J. Am. Stat. Assoc. 90(430), 567-576 (1995).
-
(1995)
J. Am. Stat. Assoc.
, vol.90
, Issue.430
, pp. 567-576
-
-
Liu, J.S.1
Chen, R.2
-
22
-
-
0032359151
-
Sequential Monte Carlo methods for dynamic systems
-
Liu, J. S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc. 93(443), 1032-1044 (1998).
-
(1998)
J. Am. Stat. Assoc.
, vol.93
, Issue.443
, pp. 1032-1044
-
-
Liu, J.S.1
Chen, R.2
-
23
-
-
1542427941
-
Filtering via simulation: auxiliary particle filter
-
Pitt, M. K., Shephard, N.: Filtering via simulation: auxiliary particle filter. J. Am. Stat. Assoc. 94(446), 550-599 (1999).
-
(1999)
J. Am. Stat. Assoc.
, vol.94
, Issue.446
, pp. 550-599
-
-
Pitt, M.K.1
Shephard, N.2
-
25
-
-
59849102627
-
Gaussian proposal density using moment matching in SMC methods
-
Saha, S., Manda, P. K., Boers, Y., Driessen, H., Bagchi, A.: Gaussian proposal density using moment matching in SMC methods. Stat. Comput. 19(2), 203-208 (2009).
-
(2009)
Stat. Comput.
, vol.19
, Issue.2
, pp. 203-208
-
-
Saha, S.1
Manda, P.K.2
Boers, Y.3
Driessen, H.4
Bagchi, A.5
-
26
-
-
0141714747
-
The unscented particle filter
-
van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: The unscented particle filter. In: Advances in Neural Information Processing Systems, vol. 13, pp. 584-590 (2001).
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 584-590
-
-
van der Merwe, R.1
Doucet, A.2
de Freitas, N.3
Wan, E.4
-
27
-
-
80051618265
-
Recent developments in auxiliary particle filtering
-
D. Barber, A. T. Cemgil, and S. Chiappa (Eds.), Cambridge: Cambridge University Press
-
Whiteley, N., Johansen, A. M.: Recent developments in auxiliary particle filtering. In: Barber, D. Cemgil, A. T. Chiappa, S. (eds.) Inference and Learning in Dynamic Models. Cambridge University Press, Cambridge (2010).
-
(2010)
Inference and Learning in Dynamic Models
-
-
Whiteley, N.1
Johansen, A.M.2
-
28
-
-
0002035207
-
Monte Carlo technique in problems of optimal data processing
-
Zaritskii, V., Svetnik, V., Shimelevich, L.: Monte Carlo technique in problems of optimal data processing. Autom. Remote Control, 12, 95-103 (1975).
-
(1975)
Autom. Remote Control
, vol.12
, pp. 95-103
-
-
Zaritskii, V.1
Svetnik, V.2
Shimelevich, L.3
|