메뉴 건너뛰기




Volumn 10, Issue 10, 2014, Pages

Break-Induced Replication Requires DNA Damage-Induced Phosphorylation of Pif1 and Leads to Telomere Lengthening

Author keywords

[No Author keywords available]

Indexed keywords

DNA HELICASE; FUNGAL ENZYME; MEC1 PROTEIN; MEC3 PROTEIN; NUCLEOTIDYLTRANSFERASE; PIF1 HELICASE; POL32 PROTEIN; PROTEIN RAD9; RAD24 PROTEIN; RAD50 PROTEIN; RAD51 PROTEIN; RAD52 PROTEIN; UNCLASSIFIED DRUG; CELL CYCLE PROTEIN; CHECKPOINT KINASE 2; DNA LIGASE; DNA LIGASE (ATP); MEC1 PROTEIN, S CEREVISIAE; PIF1 PROTEIN, S CEREVISIAE; PROTEIN SERINE THREONINE KINASE; RAD53 PROTEIN, S CEREVISIAE; REPLICATION FACTOR C; RFC1 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; SIGNAL PEPTIDE; TELOMERASE;

EID: 84908338099     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1004679     Document Type: Article
Times cited : (33)

References (52)
  • 1
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K, Datta A, Kolodner RD, (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104: 397–408.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 2
    • 33947432388 scopus 로고    scopus 로고
    • Replication fork stalling at natural impediments
    • Mirkin EV, Mirkin SM, (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71: 13–35.
    • (2007) Microbiol Mol Biol Rev , vol.71 , pp. 13-35
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 3
    • 0036531901 scopus 로고    scopus 로고
    • A unified view of the DNA-damage checkpoint
    • Melo J, Toczyski D, (2002) A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14: 237–245.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 237-245
    • Melo, J.1    Toczyski, D.2
  • 5
    • 84882372684 scopus 로고    scopus 로고
    • Break-induced replication occurs by conservative DNA synthesis
    • Donnianni RA, Symington LS, (2013) Break-induced replication occurs by conservative DNA synthesis. Proc Natl Acad Sci U S A 110: 13475–13480.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 13475-13480
    • Donnianni, R.A.1    Symington, L.S.2
  • 6
    • 84885843906 scopus 로고    scopus 로고
    • Migrating bubble during break-induced replication drives conservative DNA synthesis
    • Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y, et al. (2013) Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502: 389–392.
    • (2013) Nature , vol.502 , pp. 389-392
    • Saini, N.1    Ramakrishnan, S.2    Elango, R.3    Ayyar, S.4    Zhang, Y.5
  • 7
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard JR, Jain S, Yamaguchi M, Haber JE, (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820–823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 8
    • 84885866032 scopus 로고    scopus 로고
    • Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration
    • Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, et al. (2013) Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature 502: 393–396.
    • (2013) Nature , vol.502 , pp. 393-396
    • Wilson, M.A.1    Kwon, Y.2    Xu, Y.3    Chung, W.H.4    Chi, P.5
  • 9
    • 0027944347 scopus 로고
    • TLC1: template RNA component of Saccharomyces cerevisiae telomerase
    • Singer MS, Gottschling DE, (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266: 404–409.
    • (1994) Science , vol.266 , pp. 404-409
    • Singer, M.S.1    Gottschling, D.E.2
  • 10
    • 0030455861 scopus 로고    scopus 로고
    • Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes
    • Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V, (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144: 1399–1412.
    • (1996) Genetics , vol.144 , pp. 1399-1412
    • Lendvay, T.S.1    Morris, D.K.2    Sah, J.3    Balasubramanian, B.4    Lundblad, V.5
  • 11
    • 0030938901 scopus 로고    scopus 로고
    • Reverse transcriptase motifs in the catalytic subunit of telomerase
    • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, et al. (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.
    • (1997) Science , vol.276 , pp. 561-567
    • Lingner, J.1    Hughes, T.R.2    Shevchenko, A.3    Mann, M.4    Lundblad, V.5
  • 12
    • 0033598944 scopus 로고    scopus 로고
    • Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta
    • Diede SJ, Gottschling DE, (1999) Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99: 723–733.
    • (1999) Cell , vol.99 , pp. 723-733
    • Diede, S.J.1    Gottschling, D.E.2
  • 13
    • 0034175814 scopus 로고    scopus 로고
    • Cell cycle restriction of telomere elongation
    • Marcand S, Brevet V, Mann C, Gilson E, (2000) Cell cycle restriction of telomere elongation. Curr Biol 10: 487–490.
    • (2000) Curr Biol , vol.10 , pp. 487-490
    • Marcand, S.1    Brevet, V.2    Mann, C.3    Gilson, E.4
  • 14
    • 0025743438 scopus 로고
    • Telomerase primer specificity and chromosome healing
    • Harrington LA, Greider CW, (1991) Telomerase primer specificity and chromosome healing. Nature 353: 451–454.
    • (1991) Nature , vol.353 , pp. 451-454
    • Harrington, L.A.1    Greider, C.W.2
  • 15
    • 0025808098 scopus 로고
    • Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase
    • Morin GB, (1991) Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase. Nature 353: 454–456.
    • (1991) Nature , vol.353 , pp. 454-456
    • Morin, G.B.1
  • 16
    • 0028178792 scopus 로고
    • The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
    • Schulz VP, Zakian VA, (1994) The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145–155.
    • (1994) Cell , vol.76 , pp. 145-155
    • Schulz, V.P.1    Zakian, V.A.2
  • 17
    • 70449522305 scopus 로고    scopus 로고
    • DNA damage signalling prevents deleterious telomere addition at DNA breaks
    • Makovets S, Blackburn EH, (2009) DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 11: 1383–1386.
    • (2009) Nat Cell Biol , vol.11 , pp. 1383-1386
    • Makovets, S.1    Blackburn, E.H.2
  • 18
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung K, Chen C, Kolodner RD, (2001) Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411: 1073–1076.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 19
    • 0035016368 scopus 로고    scopus 로고
    • Short telomeres in yeast are highly recombinogenic
    • McEachern MJ, Iyer S, (2001) Short telomeres in yeast are highly recombinogenic. Mol Cell 7: 695–704.
    • (2001) Mol Cell , vol.7 , pp. 695-704
    • McEachern, M.J.1    Iyer, S.2
  • 20
    • 0018243214 scopus 로고
    • Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase
    • Johnston LH, Nasmyth KA, (1978) Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature 274: 891–893.
    • (1978) Nature , vol.274 , pp. 891-893
    • Johnston, L.H.1    Nasmyth, K.A.2
  • 21
    • 0015847513 scopus 로고
    • Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants
    • Hartwell LH, Mortimer RK, Culotti J, Culotti M, (1973) Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics 74: 267–286.
    • (1973) Genetics , vol.74 , pp. 267-286
    • Hartwell, L.H.1    Mortimer, R.K.2    Culotti, J.3    Culotti, M.4
  • 22
    • 0024522727 scopus 로고
    • Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage
    • Schiestl RH, Reynolds P, Prakash S, Prakash L, (1989) Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 9: 1882–1896.
    • (1989) Mol Cell Biol , vol.9 , pp. 1882-1896
    • Schiestl, R.H.1    Reynolds, P.2    Prakash, S.3    Prakash, L.4
  • 23
    • 0029772312 scopus 로고    scopus 로고
    • Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae
    • Adams AK, Holm C, (1996) Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Mol Cell Biol 16: 4614–4620.
    • (1996) Mol Cell Biol , vol.16 , pp. 4614-4620
    • Adams, A.K.1    Holm, C.2
  • 24
    • 0030593033 scopus 로고    scopus 로고
    • Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
    • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, et al. (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271: 357–360.
    • (1996) Science , vol.271 , pp. 357-360
    • Sanchez, Y.1    Desany, B.A.2    Jones, W.J.3    Liu, Q.4    Wang, B.5
  • 25
    • 0032161269 scopus 로고    scopus 로고
    • A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
    • Zhao X, Muller EG, Rothstein R, (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2: 329–340.
    • (1998) Mol Cell , vol.2 , pp. 329-340
    • Zhao, X.1    Muller, E.G.2    Rothstein, R.3
  • 26
    • 0038506000 scopus 로고    scopus 로고
    • Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53
    • Osborn AJ, Elledge SJ, (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17: 1755–1767.
    • (2003) Genes Dev , vol.17 , pp. 1755-1767
    • Osborn, A.J.1    Elledge, S.J.2
  • 27
    • 0037133566 scopus 로고    scopus 로고
    • The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1
    • Zhao X, Rothstein R, (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci U S A 99: 3746–3751.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 3746-3751
    • Zhao, X.1    Rothstein, R.2
  • 28
    • 0034661246 scopus 로고    scopus 로고
    • The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein
    • Qi H, Zakian VA, (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14: 1777–1788.
    • (2000) Genes Dev , vol.14 , pp. 1777-1788
    • Qi, H.1    Zakian, V.A.2
  • 29
    • 0022387528 scopus 로고
    • CDC17: an essential gene that prevents telomere elongation in yeast
    • Carson MJ, Hartwell L, (1985) CDC17: an essential gene that prevents telomere elongation in yeast. Cell 42: 249–257.
    • (1985) Cell , vol.42 , pp. 249-257
    • Carson, M.J.1    Hartwell, L.2
  • 30
    • 0033612287 scopus 로고    scopus 로고
    • Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast
    • Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM, (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97: 621–633.
    • (1999) Cell , vol.97 , pp. 621-633
    • Martin, S.G.1    Laroche, T.2    Suka, N.3    Grunstein, M.4    Gasser, S.M.5
  • 31
    • 84865105439 scopus 로고    scopus 로고
    • Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end
    • Wellinger RJ, Zakian VA, (2012) Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191: 1073–1105.
    • (2012) Genetics , vol.191 , pp. 1073-1105
    • Wellinger, R.J.1    Zakian, V.A.2
  • 32
    • 84857923425 scopus 로고    scopus 로고
    • Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model
    • Pfingsten JS, Goodrich KJ, Taabazuing C, Ouenzar F, Chartrand P, et al. (2012) Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell 148: 922–932.
    • (2012) Cell , vol.148 , pp. 922-932
    • Pfingsten, J.S.1    Goodrich, K.J.2    Taabazuing, C.3    Ouenzar, F.4    Chartrand, P.5
  • 33
    • 1942518292 scopus 로고    scopus 로고
    • Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions
    • Makovets S, Herskowitz I, Blackburn EH, (2004) Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions. Mol Cell Biol 24: 4019–4031.
    • (2004) Mol Cell Biol , vol.24 , pp. 4019-4031
    • Makovets, S.1    Herskowitz, I.2    Blackburn, E.H.3
  • 34
    • 33749511276 scopus 로고    scopus 로고
    • Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange
    • Cortes-Ledesma F, Aguilera A, (2006) Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 7: 919–926.
    • (2006) EMBO Rep , vol.7 , pp. 919-926
    • Cortes-Ledesma, F.1    Aguilera, A.2
  • 35
    • 79955499183 scopus 로고    scopus 로고
    • The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase
    • Bernstein KA, Reid RJ, Sunjevaric I, Demuth K, Burgess RC, et al. (2011) The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase. Mol Biol Cell 22: 1599–1607.
    • (2011) Mol Biol Cell , vol.22 , pp. 1599-1607
    • Bernstein, K.A.1    Reid, R.J.2    Sunjevaric, I.3    Demuth, K.4    Burgess, R.C.5
  • 37
    • 58149494717 scopus 로고    scopus 로고
    • Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination
    • Prakash R, Satory D, Dray E, Papusha A, Scheller J, et al. (2009) Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev 23: 67–79.
    • (2009) Genes Dev , vol.23 , pp. 67-79
    • Prakash, R.1    Satory, D.2    Dray, E.3    Papusha, A.4    Scheller, J.5
  • 38
    • 84864407861 scopus 로고    scopus 로고
    • The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast
    • Luke-Glaser S, Luke B, (2012) The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast. PLoS One 7: e42028.
    • (2012) PLoS One , vol.7 , pp. 42028
    • Luke-Glaser, S.1    Luke, B.2
  • 39
    • 0023813873 scopus 로고
    • Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences
    • Rudin N, Haber JE, (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol 8: 3918–3928.
    • (1988) Mol Cell Biol , vol.8 , pp. 3918-3928
    • Rudin, N.1    Haber, J.E.2
  • 40
    • 0348047594 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes
    • Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, et al. (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12: 1525–1536.
    • (2003) Mol Cell , vol.12 , pp. 1525-1536
    • Ivessa, A.S.1    Lenzmeier, B.A.2    Bessler, J.B.3    Goudsouzian, L.K.4    Schnakenberg, S.L.5
  • 41
    • 0036606186 scopus 로고    scopus 로고
    • Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA
    • Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA, (2002) Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 16: 1383–1396.
    • (2002) Genes Dev , vol.16 , pp. 1383-1396
    • Ivessa, A.S.1    Zhou, J.Q.2    Schulz, V.P.3    Monson, E.K.4    Zakian, V.A.5
  • 43
    • 84901740999 scopus 로고    scopus 로고
    • Cascades of genetic instability resulting from compromised break-induced replication
    • Vasan S, Deem A, Ramakrishnan S, Argueso JL, Malkova A, (2014) Cascades of genetic instability resulting from compromised break-induced replication. PLoS Genet 10: e1004119.
    • (2014) PLoS Genet , vol.10 , pp. 1004119
    • Vasan, S.1    Deem, A.2    Ramakrishnan, S.3    Argueso, J.L.4    Malkova, A.5
  • 44
    • 27144526423 scopus 로고    scopus 로고
    • Yeast evolution and comparative genomics
    • Liti G, Louis EJ, (2005) Yeast evolution and comparative genomics. Annu Rev Microbiol 59: 135–153.
    • (2005) Annu Rev Microbiol , vol.59 , pp. 135-153
    • Liti, G.1    Louis, E.J.2
  • 45
    • 77953076932 scopus 로고    scopus 로고
    • Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly
    • Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, et al. (2010) Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24: 1133–1144.
    • (2010) Genes Dev , vol.24 , pp. 1133-1144
    • Lydeard, J.R.1    Lipkin-Moore, Z.2    Sheu, Y.J.3    Stillman, B.4    Burgers, P.M.5
  • 46
    • 1642309305 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities
    • Torres JZ, Schnakenberg SL, Zakian VA, (2004) Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 24: 3198–3212.
    • (2004) Mol Cell Biol , vol.24 , pp. 3198-3212
    • Torres, J.Z.1    Schnakenberg, S.L.2    Zakian, V.A.3
  • 47
    • 2942532256 scopus 로고    scopus 로고
    • A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length
    • Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101: 8658–8663 Epub 2004 May 8625.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 8658-8663
    • Askree, S.H.1    Yehuda, T.2    Smolikov, S.3    Gurevich, R.4    Hawk, J.5
  • 48
    • 33645793749 scopus 로고    scopus 로고
    • Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast
    • Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, et al. (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2: e35 Epub 2006 Mar 2017.
    • (2006) PLoS Genet , vol.2 , pp. 35
    • Gatbonton, T.1    Imbesi, M.2    Nelson, M.3    Akey, J.M.4    Ruderfer, D.M.5
  • 49
    • 34948898465 scopus 로고    scopus 로고
    • Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1-dependent manner in Saccharomyces cerevisiae
    • Chang M, Arneric M, Lingner J, (2007) Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1-dependent manner in Saccharomyces cerevisiae. Genes Dev 21: 2485–2494.
    • (2007) Genes Dev , vol.21 , pp. 2485-2494
    • Chang, M.1    Arneric, M.2    Lingner, J.3
  • 50
    • 34547731434 scopus 로고    scopus 로고
    • Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae
    • Sabourin M, Tuzon CT, Zakian VA, (2007) Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol Cell 27: 550–561.
    • (2007) Mol Cell , vol.27 , pp. 550-561
    • Sabourin, M.1    Tuzon, C.T.2    Zakian, V.A.3
  • 51
    • 84860324635 scopus 로고    scopus 로고
    • The role of telomere trimming in normal telomere length dynamics
    • Pickett HA, Reddel RR, (2012) The role of telomere trimming in normal telomere length dynamics. Cell Cycle 11: 1309–1315.
    • (2012) Cell Cycle , vol.11 , pp. 1309-1315
    • Pickett, H.A.1    Reddel, R.R.2
  • 52
    • 0032530170 scopus 로고    scopus 로고
    • The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae
    • O'Rourke SM, Herskowitz I, (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12: 2874–2886.
    • (1998) Genes Dev , vol.12 , pp. 2874-2886
    • O'rourke, S.M.1    Herskowitz, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.