메뉴 건너뛰기




Volumn 20, Issue 11, 2014, Pages 1815-1826

High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states

Author keywords

Compensatory rescue; Mutate and map; Ribosome; RNA folding; Secondary structure; SHAPE

Indexed keywords

HYDROXYL GROUP; RNA 16S; SELECTIVE 2' HYDROXYL; UNCLASSIFIED DRUG;

EID: 84908122152     PISSN: 13558382     EISSN: 14699001     Source Type: Journal    
DOI: 10.1261/rna.044321.114     Document Type: Article
Times cited : (45)

References (65)
  • 1
    • 33646841501 scopus 로고    scopus 로고
    • Hydroxyl radical footprinting in vivo: Mapping macromolecular structures with synchrotron radiation
    • Adilakshmi T, Lease RA, Woodson SA. 2006. Hydroxyl radical footprinting in vivo: Mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res 34: E64.
    • (2006) Nucleic Acids Res , vol.34 , pp. e64
    • Adilakshmi, T.1    Lease, R.A.2    Woodson, S.A.3
  • 4
    • 0036303417 scopus 로고    scopus 로고
    • Crystal structure of the 30 S ribosomal subunit from thermus thermophilus: Structure of the proteins and their interactions with 16 S RNA
    • Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V. 2002. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: Structure of the proteins and their interactions with 16 S RNA. J Mol Biol 316: 725-768.
    • (2002) J Mol Biol , vol.316 , pp. 725-768
    • Brodersen, D.E.1    Clemons, W.M.2    Carter, A.P.3    Wimberly, B.T.4    Ramakrishnan, V.5
  • 5
    • 84908130641 scopus 로고    scopus 로고
    • MOHCA-seq: RNA 3D models from single multiplexed proximity- mapping experiments
    • Cheng C, Chou F-C, Kladwang W, Tian S, Cordero P, Das R. 2014. MOHCA-seq: RNA 3D models from single multiplexed proximity- mapping experiments. bioRxiv doi: Http://dx.doi.org/10.1101/004556.
    • (2014) BioRxiv
    • Cheng, C.1    Chou, F.-C.2    Kladwang, W.3    Tian, S.4    Cordero, P.5    Das, R.6
  • 6
    • 84866060803 scopus 로고    scopus 로고
    • Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference
    • Cordero P, Kladwang W, VanLang CC, Das R. 2012a. Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51: 7037-7039.
    • (2012) Biochemistry , vol.51 , pp. 7037-7039
    • Cordero, P.1    Kladwang, W.2    Vanlang, C.C.3    Das, R.4
  • 7
    • 84869472916 scopus 로고    scopus 로고
    • An RNA mapping database for curating RNA structure mapping experiments
    • Cordero P, Lucks JB, Das R. 2012b. An RNA Mapping DataBase for curating RNA structure mapping experiments. Bioinformatics 28: 3006-3008.
    • (2012) Bioinformatics , vol.28 , pp. 3006-3008
    • Cordero, P.1    Lucks, J.B.2    Das, R.3
  • 8
    • 84934441351 scopus 로고    scopus 로고
    • A mutate-and-map protocol for inferring base pairs in structured RNA
    • Cordero P, Kladwang W, VanLang CC, Das R. 2014. A mutate-and-map protocol for inferring base pairs in structured RNA. Methods Mol Biol 1086: 53-77.
    • (2014) Methods Mol Biol , vol.1086 , pp. 53-77
    • Cordero, P.1    Kladwang, W.2    Vanlang, C.C.3    Das, R.4
  • 9
    • 67650727366 scopus 로고    scopus 로고
    • VARNA: Interactive drawing and editing of the RNA secondary structure
    • Darty K, Denise A, Ponty Y. 2009. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25: 1974-1975.
    • (2009) Bioinformatics , vol.25 , pp. 1974-1975
    • Darty, K.1    Denise, A.2    Ponty, Y.3
  • 13
    • 84861978778 scopus 로고    scopus 로고
    • Three-dimensional RNA structure refinement by hydroxyl radical probing
    • Ding F, Lavender CA, Weeks KM, Dokholyan NV. 2012. Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat Methods 9: 603-608.
    • (2012) Nat Methods , vol.9 , pp. 603-608
    • Ding, F.1    Lavender, C.A.2    Weeks, K.M.3    Dokholyan, N.V.4
  • 14
    • 0029982849 scopus 로고    scopus 로고
    • Bootstrap confidence levels for phylogenetic trees
    • Efron B, Halloran E, Holmes S. 1996. Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci 93: 13429.
    • (1996) Proc Natl Acad Sci , vol.93 , pp. 13429
    • Efron, B.1    Halloran, E.2    Holmes, S.3
  • 15
    • 36248982074 scopus 로고    scopus 로고
    • Mutational analysis of the purine riboswitch aptamer domain
    • Gilbert SD, Love CE, Edwards AL, Batey RT. 2007. Mutational analysis of the purine riboswitch aptamer domain. Biochemistry 46: 13297- 13309.
    • (2007) Biochemistry , vol.46 , pp. 13297-13309
    • Gilbert, S.D.1    Love, C.E.2    Edwards, A.L.3    Batey, R.T.4
  • 16
    • 85011940619 scopus 로고    scopus 로고
    • Effect of mutations on the p53 IRES RNA structure: Implications for de-regulation of the synthesis of p53 isoforms
    • Grover R, Sharathchandra A, Ponnuswamy A, Khan D, Das S. 2011. Effect of mutations on the p53 IRES RNA structure: Implications for de-regulation of the synthesis of p53 isoforms. RNA Biol 8: 132-142.
    • (2011) RNA Biol , vol.8 , pp. 132-142
    • Grover, R.1    Sharathchandra, A.2    Ponnuswamy, A.3    Khan, D.4    Das, S.5
  • 18
    • 80052982281 scopus 로고    scopus 로고
    • The dynamic nature of RNA as key to understanding riboswitch mechanisms
    • Haller A, Soulière MF, Micura R. 2011. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44: 1339-1348.
    • (2011) Acc Chem Res , vol.44 , pp. 1339-1348
    • Haller, A.1    Soulière, M.F.2    Micura, R.3
  • 19
    • 58049217240 scopus 로고    scopus 로고
    • Riboswitch RNAs: Using RNA to sense cellular metabolism
    • Henkin TM. 2008. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22: 3383-3390.
    • (2008) Genes Dev , vol.22 , pp. 3383-3390
    • Henkin, T.M.1
  • 20
    • 84874304357 scopus 로고    scopus 로고
    • Retrotransposon Ty1 RNA contains a 5′-terminal long-range pseudoknot required for efficient reverse transcription
    • Huang Q, Purzycka KJ, Lusvarghi S, Li D, LeGrice SFJ, Boeke JD. 2013. Retrotransposon Ty1 RNA contains a 5′-terminal long-range pseudoknot required for efficient reverse transcription. RNA 19: 320-332.
    • (2013) RNA , vol.19 , pp. 320-332
    • Huang, Q.1    Purzycka, K.J.2    Lusvarghi, S.3    Li, D.4    Legrice, S.F.J.5    Boeke, J.D.6
  • 21
    • 84871411741 scopus 로고    scopus 로고
    • QuShape: Rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis
    • Karabiber F, McGinnis JL, Favorov OV, Weeks KM. 2013. QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA 19: 63-73.
    • (2013) RNA , vol.19 , pp. 63-73
    • Karabiber, F.1    Mcginnis, J.L.2    Favorov, O.V.3    Weeks, K.M.4
  • 23
    • 65449129993 scopus 로고    scopus 로고
    • A robust peak detection method for RNA structure inference by highthroughput contact mapping
    • Kim J, Yu S, Shim B, Kim H, Min H, Chung EY, Das R, Yoon S. 2009. A robust peak detection method for RNA structure inference by highthroughput contact mapping. Bioinformatics 25: 1137-1144.
    • (2009) Bioinformatics , vol.25 , pp. 1137-1144
    • Kim, J.1    Yu, S.2    Shim, B.3    Kim, H.4    Min, H.5    Chung, E.Y.6    Das, R.7    Yoon, S.8
  • 24
    • 84883562900 scopus 로고    scopus 로고
    • HiTRACE-Web: An online tool for robust analysis of high-throughput capillary electrophoresis
    • Kim H, Cordero P, Das R, Yoon S. 2013. HiTRACE-Web: An online tool for robust analysis of high-throughput capillary electrophoresis. Nucleic Acids Res 41: W492-W498.
    • (2013) Nucleic Acids Res , vol.41 , pp. W492-W498
    • Kim, H.1    Cordero, P.2    Das, R.3    Yoon, S.4
  • 25
    • 77956144376 scopus 로고    scopus 로고
    • A mutate-and-map strategy for inferring base pairs in structured nucleic acids: Proof of concept on a DNA/RNA helix
    • Kladwang W, Das R. 2010. A mutate-and-map strategy for inferring base pairs in structured nucleic acids: proof of concept on a DNA/RNA helix. Biochemistry 49: 7414-7416.
    • (2010) Biochemistry , vol.49 , pp. 7414-7416
    • Kladwang, W.1    Das, R.2
  • 26
    • 79951542790 scopus 로고    scopus 로고
    • A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA
    • Kladwang W, Cordero P, Das R. 2011a. A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. RNA 17: 522-534.
    • (2011) RNA , vol.17 , pp. 522-534
    • Kladwang, W.1    Cordero, P.2    Das, R.3
  • 27
    • 82055176702 scopus 로고    scopus 로고
    • A two-dimensional mutate-and-map strategy for non-coding RNA structure
    • Kladwang W, VanLang CC, Cordero P, Das R. 2011b. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 3: 954-962.
    • (2011) Nat Chem , vol.3 , pp. 954-962
    • Kladwang, W.1    Vanlang, C.C.2    Cordero, P.3    Das, R.4
  • 28
    • 80052729501 scopus 로고    scopus 로고
    • Understanding the errors of SHAPE-directed RNA structure modeling
    • Kladwang W, VanLang CC, Cordero P, Das R. 2011c. Understanding the errors of SHAPE-directed RNA structure modeling. Biochemistry 50: 8049-8056.
    • (2011) Biochemistry , vol.50 , pp. 8049-8056
    • Kladwang, W.1    Vanlang, C.C.2    Cordero, P.3    Das, R.4
  • 32
    • 0035010211 scopus 로고    scopus 로고
    • Geometric nomenclature and classification of RNA base pairs
    • Leontis NB, Westhof E. 2001. Geometric nomenclature and classification of RNA base pairs. RNA 7: 499-512.
    • (2001) RNA , vol.7 , pp. 499-512
    • Leontis, N.B.1    Westhof, E.2
  • 34
    • 0027535112 scopus 로고
    • Replication of hepatitis δ virus RNA: Effect of mutations of the autocatalytic cleavage sites
    • Macnaughton TB, Wang YJ, Lai MM. 1993. Replication of hepatitis δ virus RNA: Effect of mutations of the autocatalytic cleavage sites. J Virol 67: 2228-2234.
    • (1993) J Virol , vol.67 , pp. 2228-2234
    • Macnaughton, T.B.1    Wang, Y.J.2    Lai, M.M.3
  • 35
    • 2442626706 scopus 로고    scopus 로고
    • Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure
    • Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci 101: 7287-7292.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 7287-7292
    • Mathews, D.H.1    Disney, M.D.2    Childs, J.L.3    Schroeder, S.J.4    Zuker, M.5    Turner, D.H.6
  • 37
    • 16244412610 scopus 로고    scopus 로고
    • RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE)
    • Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. 2005. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127: 4223-4231.
    • (2005) J Am Chem Soc , vol.127 , pp. 4223-4231
    • Merino, E.J.1    Wilkinson, K.A.2    Coughlan, J.L.3    Weeks, K.M.4
  • 38
    • 0018470801 scopus 로고
    • Structure-independent nucleotide sequence analysis
    • Mills DR, Kramer FR. 1979. Structure-independent nucleotide sequence analysis. Proc Natl Acad Sci 76: 2232-2235.
    • (1979) Proc Natl Acad Sci , vol.76 , pp. 2232-2235
    • Mills, D.R.1    Kramer, F.R.2
  • 39
    • 46349099944 scopus 로고    scopus 로고
    • High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis
    • Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A. 2008. High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36: E63.
    • (2008) Nucleic Acids Res , vol.36 , pp. R63
    • Mitra, S.1    Shcherbakova, I.V.2    Altman, R.B.3    Brenowitz, M.4    Laederach, A.5
  • 40
    • 34247162792 scopus 로고    scopus 로고
    • A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry
    • Mortimer SA, Weeks KM. 2007. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129: 4144-4145.
    • (2007) J Am Chem Soc , vol.129 , pp. 4144-4145
    • Mortimer, S.A.1    Weeks, K.M.2
  • 41
    • 0346687595 scopus 로고    scopus 로고
    • The riboswitch control of bacterial metabolism
    • Nudler E, Mironov AS. 2004. The riboswitch control of bacterial metabolism. Trends Biochem Sci 29: 11-17.
    • (2004) Trends Biochem Sci , vol.29 , pp. 11-17
    • Nudler, E.1    Mironov, A.S.2
  • 42
    • 0032563297 scopus 로고    scopus 로고
    • Folding intermediates of a self-splicing RNA: Mispairing of the catalytic core
    • Pan J, Woodson SA. 1998. Folding intermediates of a self-splicing RNA: Mispairing of the catalytic core. J Mol Biol 280: 597-609.
    • (1998) J Mol Biol , vol.280 , pp. 597-609
    • Pan, J.1    Woodson, S.A.2
  • 43
    • 83755205383 scopus 로고    scopus 로고
    • Simplified RNA secondary structure mapping by automation of shape data analysis
    • Pang PS, Elazar M, Pham EA, Glenn JS. 2011. Simplified RNA secondary structure mapping by automation of SHAPE data analysis. Nucleic Acids Res 39: E151.
    • (2011) Nucleic Acids Res , vol.39 , pp. e151
    • Pang, P.S.1    Elazar, M.2    Pham, E.A.3    Glenn, J.S.4
  • 44
    • 84884679567 scopus 로고    scopus 로고
    • Automated classification of RNA 3D motifs and the RNA 3D motif atlas
    • Petrov AI, Zirbel CL, Leontis NB. 2013. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA 19: 1327-1340.
    • (2013) RNA , vol.19 , pp. 1327-1340
    • Petrov, A.I.1    Zirbel, C.L.2    Leontis, N.B.3
  • 45
    • 77952733078 scopus 로고    scopus 로고
    • Evaluation of the information content of RNA structure mapping data for secondary structure prediction
    • Quarrier S, Martin JS, Davis-Neulander L, Beauregard A, Laederach A. 2010. Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16: 1108-1117.
    • (2010) RNA , vol.16 , pp. 1108-1117
    • Quarrier, S.1    Martin, J.S.2    Davis-Neulander, L.3    Beauregard, A.4    Laederach, A.5
  • 46
    • 84873844807 scopus 로고    scopus 로고
    • Statistical analysis of SHAPE-directed RNA secondary structure modeling
    • Ramachandran S, Ding F, Weeks KM, Dokholyan NV. 2013. Statistical analysis of SHAPE-directed RNA secondary structure modeling. Biochemistry 52: 596-599.
    • (2013) Biochemistry , vol.52 , pp. 596-599
    • Ramachandran, S.1    Ding, F.2    Weeks, K.M.3    Dokholyan, N.V.4
  • 47
    • 77949447172 scopus 로고    scopus 로고
    • RNAstructure: Software for RNA secondary structure prediction and analysis
    • Reuter J, Mathews D. 2010. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11: 129.
    • (2010) BMC Bioinformatics , vol.11 , pp. 129
    • Reuter, J.1    Mathews, D.2
  • 48
    • 84901436960 scopus 로고    scopus 로고
    • RNA secondary structure modeling at consistent high accuracy using differential SHAPE
    • Rice GM, Leonard CW, Weeks KM. 2014. RNA secondary structure modeling at consistent high accuracy using differential SHAPE. RNA 20: 846-854.
    • (2014) RNA , vol.20 , pp. 846-854
    • Rice, G.M.1    Leonard, C.W.2    Weeks, K.M.3
  • 50
    • 0027483417 scopus 로고
    • Ribosome activity and modification of 16s RNA are influenced by deletion of ribosomal protein S20
    • Rydén-Aulin M, Shaoping Z, Kylsten P, Isaksson LA. 1993. Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20. Mol Microbiol 7: 983-992.
    • (1993) Mol Microbiol , vol.7 , pp. 983-992
    • Rydén-Aulin, M.1    Shaoping, Z.2    Kylsten, P.3    Isaksson, L.A.4
  • 51
    • 84934435385 scopus 로고    scopus 로고
    • Massively parallel RNA chemical mapping with a reduced bias protocol
    • Seetin MG, Kladwang W, Bida JP, Das R. 2014. Massively parallel RNA chemical mapping with a reduced bias protocol. Methods Mol Biol 1086: 95-117.
    • (2014) Methods Mol Biol , vol.1086 , pp. 95-117
    • Seetin, M.G.1    Kladwang, W.2    Bida, J.P.3    Das, R.4
  • 52
    • 80054818327 scopus 로고    scopus 로고
    • Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease (RNase-detected shape) for direct analysis of covalent adducts and of nucleotide flexibility in rna
    • Siegfried NA, Weeks KM, Steen K-A. 2011. Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease (RNase-detected SHAPE) for direct analysis of covalent adducts and of nucleotide flexibility in RNA. Nat Protoc 6: 1683-1694.
    • (2011) Nat Protoc , vol.6 , pp. 1683-1694
    • Siegfried, N.A.1    Weeks, K.M.2    Steen, K.-A.3
  • 53
    • 84876381139 scopus 로고    scopus 로고
    • Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions
    • Sükösd Z, Swenson MS, Kjems J, Heitsch CE. 2013. Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids Res 41: 2807-2816.
    • (2013) Nucleic Acids Res , vol.41 , pp. 2807-2816
    • Sükösd, Z.1    Swenson, M.S.2    Kjems, J.3    Heitsch, C.E.4
  • 54
    • 38449119903 scopus 로고    scopus 로고
    • DMS footprinting of structured RNAs and RNA-protein complexes
    • Tijerina P, Mohr S, Russell R. 2007. DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2: 2608- 2623.
    • (2007) Nat Protoc , vol.2 , pp. 2608-2623
    • Tijerina, P.1    Mohr, S.2    Russell, R.3
  • 56
    • 52949152433 scopus 로고    scopus 로고
    • ShapeFinder: A software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis
    • Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC. 2008. ShapeFinder: A software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14: 1979-1990.
    • (2008) RNA , vol.14 , pp. 1979-1990
    • Vasa, S.M.1    Guex, N.2    Wilkinson, K.A.3    Weeks, K.M.4    Giddings, M.C.5
  • 57
    • 0029805895 scopus 로고    scopus 로고
    • A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs
    • Walczak R, Westhof E, Carbon P, Krol A. 1996. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2: 367-379.
    • (1996) RNA , vol.2 , pp. 367-379
    • Walczak, R.1    Westhof, E.2    Carbon, P.3    Krol, A.4
  • 59
    • 0033648805 scopus 로고    scopus 로고
    • Use of dimethyl sulfate to probe RNA structure in vivo
    • Wells SE, Hughes JMX, Igel AH, Ares M Jr. 2000. Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol 318: 479-493.
    • (2000) Methods Enzymol , vol.318 , pp. 479-493
    • Wells, S.E.1    Hughes, J.M.X.2    Igel, A.H.3    Ares, M.4
  • 61
    • 33947720028 scopus 로고    scopus 로고
    • Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): Quantitative RNA structure analysis at single nucleotide resolution
    • Wilkinson KA, Merino EJ, Weeks KM. 2006. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1: 1610-1616.
    • (2006) Nat Protoc , vol.1 , pp. 1610-1616
    • Wilkinson, K.A.1    Merino, E.J.2    Weeks, K.M.3
  • 62
    • 0026478939 scopus 로고
    • Mutagenesis analysis of the self-cleavage domain of hepatitis δ virus antigenomic RNA
    • Wu HN, Huang ZS. 1992. Mutagenesis analysis of the self-cleavage domain of hepatitis δ virus antigenomic RNA. Nucleic Acids Res 20: 5937-5941.
    • (1992) Nucleic Acids Res , vol.20 , pp. 5937-5941
    • Wu, H.N.1    Huang, Z.S.2
  • 63
    • 79959458096 scopus 로고    scopus 로고
    • HiTRACE: High-throughput robust analysis for capillary electrophoresis
    • Yoon S, Kim J, Hum J, Kim H, Park S, Kladwang W, Das R. 2011. HiTRACE: High-throughput robust analysis for capillary electrophoresis. Bioinformatics 27: 1798-1805.
    • (2011) Bioinformatics , vol.27 , pp. 1798-1805
    • Yoon, S.1    Kim, J.2    Hum, J.3    Kim, H.4    Park, S.5    Kladwang, W.6    Das, R.7
  • 64
    • 69249112231 scopus 로고    scopus 로고
    • Structures of the ribosome in intermediate states of ratcheting
    • Zhang W, Dunkle JA, Cate JHD. 2009. Structures of the ribosome in intermediate states of ratcheting. Science 325: 1014-1017.
    • (2009) Science , vol.325 , pp. 1014-1017
    • Zhang, W.1    Dunkle, J.A.2    Cate, J.H.D.3
  • 65
    • 78049276834 scopus 로고    scopus 로고
    • Ribozymes and riboswitches: Modulation of RNA function by small molecules
    • Zhang J, Lau MW, Ferré-D'Amaré AR. 2010. Ribozymes and riboswitches: Modulation of RNA function by small molecules. Biochemistry 49: 9123-9131.
    • (2010) Biochemistry , vol.49 , pp. 9123-9131
    • Zhang, J.1    Lau, M.W.2    Ferré-D'amaré, A.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.