메뉴 건너뛰기




Volumn 72, Issue 8, 2014, Pages 3111-3128

Creating an advanced backpropagation neural network toolbox within GIS software

Author keywords

Advanced backpropagation; Digital elevation model; GIS; Neural network; Neural network residual kriging; Spatial interpolation

Indexed keywords

CLUSTERING ALGORITHMS; DIGITAL INSTRUMENTS; DIGITAL LIBRARIES; FORESTRY; GEOGRAPHIC INFORMATION SYSTEMS; GEOMORPHOLOGY; HAZARDS; INTERPOLATION; OPEN SOURCE SOFTWARE; RISK ASSESSMENT; SOFTWARE TESTING; SPATIAL VARIABLES MEASUREMENT; SURVEYING;

EID: 84907681950     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-014-3216-7     Document Type: Article
Times cited : (10)

References (69)
  • 1
    • 53249119799 scopus 로고    scopus 로고
    • Classification with artificial neural networks and support vector machines: application to oil fluorescence spectra
    • Almhdi KM, Valigi P, Gulbinas V, Westphal R, Reuter R (2007) Classification with artificial neural networks and support vector machines: application to oil fluorescence spectra. Eur Assoc Remote Sens Lab (EARSeL) eProceeding 6(2):115–129
    • (2007) Eur Assoc Remote Sens Lab (EARSeL) eProceeding , vol.6 , Issue.2 , pp. 115-129
    • Almhdi, K.M.1    Valigi, P.2    Gulbinas, V.3    Westphal, R.4    Reuter, R.5
  • 2
    • 58449121075 scopus 로고    scopus 로고
    • Optimum learning rate in back-propagation neural network for classification of satellite images (IRS-1D)
    • Amini J (2008) Optimum learning rate in back-propagation neural network for classification of satellite images (IRS-1D). Sci Iran 15(6):558–567
    • (2008) Sci Iran , vol.15 , Issue.6 , pp. 558-567
    • Amini, J.1
  • 4
    • 84907691010 scopus 로고    scopus 로고
    • Accessed 2 Apr 2014
    • Borne KD (2005) UMUC data mining lecture 2. http://polaris.umuc.edu/its/CSMN/csmn667/lecture02.ppt. Accessed 2 Apr 2014
    • (2005) UMUC data mining lecture 2
    • Borne, K.D.1
  • 5
    • 0005380346 scopus 로고
    • Neural networks primer, part III
    • Caudill M (1988) Neural networks primer, part III. AI Expert 3(6):53–59
    • (1988) AI Expert , vol.3 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 6
    • 67650677066 scopus 로고    scopus 로고
    • Combining back-propagation and genetic algorithms to train neural networks for ambient temperature modeling in Italy
    • Springer, Berlin:
    • Ceravolo F, Felice MD, Pizzuti S (2009) Combining back-propagation and genetic algorithms to train neural networks for ambient temperature modeling in Italy. In: Giacobini et al. (ed) Applications of evolutionary computing. Springer, Berlin, pp 123–131
    • (2009) Applications of evolutionary computing , pp. 123-131
    • Ceravolo, F.1    Felice, M.D.2    Pizzuti, S.3
  • 11
    • 78650201021 scopus 로고    scopus 로고
    • A high order neural network to solve crossbar switch problem
    • Ding Y, Dong L, Wang L, Wu G (2010) A high order neural network to solve crossbar switch problem. In: Wong KW, Mendis BSU, Bouzerdoum A (eds) ICONIP 2010, part II. LNCS, vol 6444, Australia, pp 692–699
    • (2010) ICONIP 2010, part II. LNCS , vol.6444 , pp. 692-699
    • Ding, Y.1    Dong, L.2    Wang, L.3    Wu, G.4
  • 12
    • 79960850584 scopus 로고    scopus 로고
    • Measuring skewness: a forgotten statistic?
    • Doane DP, Seward LE (2011) Measuring skewness: a forgotten statistic? J Stat Educ 19(2):45–63
    • (2011) J Stat Educ , vol.19 , Issue.2 , pp. 45-63
    • Doane, D.P.1    Seward, L.E.2
  • 15
    • 84907695673 scopus 로고    scopus 로고
    • Accessed 2 Apr 2014
    • ESRI (2014) ArcGIS resource center. http://resources.arcgis.com/. Accessed 2 Apr 2014
    • (2014) ArcGIS resource center
  • 16
    • 0027627965 scopus 로고
    • Working with neural networks
    • Hammerstrom D (1993) Working with neural networks. IEEE Spectr 30(7):46–53
    • (1993) IEEE Spectr , vol.30 , Issue.7 , pp. 46-53
    • Hammerstrom, D.1
  • 17
    • 84947418173 scopus 로고
    • The influence of the sigmoid function parameters on the speed of backpropagation learning
    • Mira J, Sandoval F, (eds), Springer, Berlin:
    • Han J, Moraga C (1995) The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira J, Sandoval F (eds) From natural to artificial neural computation. Springer, Berlin, pp 195–201
    • (1995) From natural to artificial neural computation , pp. 195-201
    • Han, J.1    Moraga, C.2
  • 18
    • 84907708090 scopus 로고    scopus 로고
    • Flow forecasting using neural networks model in Nakdong river basin
    • Han KY, Choi HG, Kim DI, Kim JE (2008) Flow forecasting using neural networks model in Nakdong river basin. Korean Soc Water Environ 2:798–800
    • (2008) Korean Soc Water Environ , vol.2 , pp. 798-800
    • Han, K.Y.1    Choi, H.G.2    Kim, D.I.3    Kim, J.E.4
  • 20
    • 34249996860 scopus 로고    scopus 로고
    • The extrapolation of artificial neural networks for the modelling of rainfall–runoff relationships
    • Hettiarachchi P, Hall MJ, Minns AW (2005) The extrapolation of artificial neural networks for the modelling of rainfall–runoff relationships. J Hydroinf 7(4):291–296
    • (2005) J Hydroinf , vol.7 , Issue.4 , pp. 291-296
    • Hettiarachchi, P.1    Hall, M.J.2    Minns, A.W.3
  • 21
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang GB (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14(2):274–281
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.B.1
  • 23
    • 80051893176 scopus 로고    scopus 로고
    • Statistical normalization and back propagation for classification
    • Jayalakshmi T, Santhakumaran A (2011) Statistical normalization and back propagation for classification. Int J Comput Theory Eng 3(1):89–93
    • (2011) Int J Comput Theory Eng , vol.3 , Issue.1 , pp. 89-93
    • Jayalakshmi, T.1    Santhakumaran, A.2
  • 24
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall–runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong DI, Kim YO (2005) Rainfall–runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol Process 19(19):3819–3835
    • (2005) Hydrol Process , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.I.1    Kim, Y.O.2
  • 25
    • 0006540633 scopus 로고    scopus 로고
    • Comparing measures of sample skewness and kurtosis
    • Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. J R Stat Soc 47(1):183–189
    • (1998) J R Stat Soc , vol.47 , Issue.1 , pp. 183-189
    • Joanes, D.N.1    Gill, C.A.2
  • 27
    • 84907695177 scopus 로고    scopus 로고
    • Interpolation of sparse digital elevation model using back propagation neural networks
    • Kachru K, Chamy M, Chowdhury S (2002) Interpolation of sparse digital elevation model using back propagation neural networks. Indian Cartogr 22:219–226
    • (2002) Indian Cartogr , vol.22 , pp. 219-226
    • Kachru, K.1    Chamy, M.2    Chowdhury, S.3
  • 29
    • 0030439751 scopus 로고    scopus 로고
    • A xerion-based perl program to train a neural network for grid pattern recognition
    • Kao JJ (1996) A xerion-based perl program to train a neural network for grid pattern recognition. Comput Geosci 22(9):1033–1049
    • (1996) Comput Geosci , vol.22 , Issue.9 , pp. 1033-1049
    • Kao, J.J.1
  • 31
    • 84865760441 scopus 로고    scopus 로고
    • An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia
    • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67(1):251–264
    • (2012) Environ Earth Sci , vol.67 , Issue.1 , pp. 251-264
    • Kia, M.B.1    Pirasteh, S.2    Pradhan, B.3    Mahmud, A.R.4    Sulaiman, W.N.A.5    Moradi, A.6
  • 33
    • 33746647308 scopus 로고    scopus 로고
    • Earthquake-induced landslide-susceptibility mapping using an artificial neural network
    • Lee S, Evangelista DG (2006) Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat Hazards Earth Syst Sci 6:687–695
    • (2006) Nat Hazards Earth Syst Sci , vol.6 , pp. 687-695
    • Lee, S.1    Evangelista, D.G.2
  • 34
    • 22044456685 scopus 로고    scopus 로고
    • An offset error compensation method for improving ANN accuracy when used for position control of precision machinery
    • Lou YF, Brunn P (1998) An offset error compensation method for improving ANN accuracy when used for position control of precision machinery. Neural Comput Appl 7(1):90–95
    • (1998) Neural Comput Appl , vol.7 , Issue.1 , pp. 90-95
    • Lou, Y.F.1    Brunn, P.2
  • 35
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ Model Softw 25(8):891–909
    • (2010) Environ Model Softw , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 38
    • 0036529032 scopus 로고    scopus 로고
    • Artificial neural networks as a method of spatial interpolation for digital elevation models
    • Merwin DA, Cromley RG, Civco DL (2002) Artificial neural networks as a method of spatial interpolation for digital elevation models. Cartogr Geogr Inf Sci 29(2):99–110
    • (2002) Cartogr Geogr Inf Sci , vol.29 , Issue.2 , pp. 99-110
    • Merwin, D.A.1    Cromley, R.G.2    Civco, D.L.3
  • 40
    • 84907689539 scopus 로고    scopus 로고
    • Implementation of ANN in GRASS—an example of using ANN for spatial interpolation
    • Netzel P (2011) Implementation of ANN in GRASS—an example of using ANN for spatial interpolation. In: Geoinformatics FCE CTU 2011, Prague, Czech Republic, 19–20 May 2011
    • In: Geoinformatics FCE CTU 2011, Prague, Czech Republic , pp. 19-20
    • Netzel, P.1
  • 43
    • 0013379958 scopus 로고    scopus 로고
    • Accessed 2 Apr 2014
    • NIST/SEMATECH (2012) E-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/. Accessed 2 Apr 2014
    • (2012) E-handbook of statistical methods
  • 44
    • 84874117042 scopus 로고    scopus 로고
    • Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea
    • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68(5):1443–1464
    • (2013) Environ Earth Sci , vol.68 , Issue.5 , pp. 1443-1464
    • Park, S.1    Choi, C.2    Kim, B.3    Kim, J.4
  • 45
    • 84907693831 scopus 로고    scopus 로고
    • Data mining
    • Patel N (2003) Data mining. In: Lecture note, MIT open courseware. http://ocw.mit.edu/courses/sloan-school-of-management/15-062-data-mining-spring-2003/lecture-notes/NeuralNet2002.pdf. Accessed 2 Apr 2014
    • (2003) In: Lecture note, MIT open courseware
    • Patel, N.1
  • 46
    • 70350074037 scopus 로고    scopus 로고
    • Landslide risk analysis using artificial neural network model focussing on different training sites
    • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focussing on different training sites. Int J Phys Sci 4(1):1–15
    • (2009) Int J Phys Sci , vol.4 , Issue.1 , pp. 1-15
    • Pradhan, B.1    Lee, S.2
  • 47
    • 77954084069 scopus 로고    scopus 로고
    • Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models
    • Pradhan B, Lee S (2010a) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054
    • (2010) Environ Earth Sci , vol.60 , Issue.5 , pp. 1037-1054
    • Pradhan, B.1    Lee, S.2
  • 48
    • 76749088419 scopus 로고    scopus 로고
    • Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling
    • Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Model Softw 25(6):747–759
    • (2010) Environ Model Softw , vol.25 , Issue.6 , pp. 747-759
    • Pradhan, B.1    Lee, S.2
  • 49
    • 77952010906 scopus 로고    scopus 로고
    • A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
    • Pradhan B, Lee S, Buchroithner MF (2010a) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban Syst 34(3):216–235
    • (2010) Comput Environ Urban Syst , vol.34 , Issue.3 , pp. 216-235
    • Pradhan, B.1    Lee, S.2    Buchroithner, M.F.3
  • 50
    • 77952410512 scopus 로고    scopus 로고
    • Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model
    • Pradhan B, Youssef AM, Varathrajoo R (2010b) Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geospat Inf Sci 13(2):93–102
    • (2010) Geospat Inf Sci , vol.13 , Issue.2 , pp. 93-102
    • Pradhan, B.1    Youssef, A.M.2    Varathrajoo, R.3
  • 51
    • 84907706299 scopus 로고    scopus 로고
    • Landslide susceptibility analysis in Jeju using artificial neural network (ANN) and GIS
    • Quan HC, Lee BG, Cho EI (2008) Landslide susceptibility analysis in Jeju using artificial neural network (ANN) and GIS. J Environ Sci 17(6):679–687
    • (2008) J Environ Sci , vol.17 , Issue.6 , pp. 679-687
    • Quan, H.C.1    Lee, B.G.2    Cho, E.I.3
  • 52
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall–runoff modeling
    • Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall–runoff modeling. Hydrol Sci J 47(6):865–877
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 53
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms
    • Riedmiller M (1994) Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Comput Stand Interfaces 16(3):265–278
    • (1994) Comput Stand Interfaces , vol.16 , Issue.3 , pp. 265-278
    • Riedmiller, M.1
  • 56
    • 84899914647 scopus 로고    scopus 로고
    • Comparison of supervised and unsupervised learning algorithms for pattern classification
    • Sathya R, Abraham A (2013) Comparison of supervised and unsupervised learning algorithms for pattern classification. Int J Adv Res Artificial Intell 2(2):34–38
    • (2013) Int J Adv Res Artificial Intell , vol.2 , Issue.2 , pp. 34-38
    • Sathya, R.1    Abraham, A.2
  • 57
    • 53349177535 scopus 로고    scopus 로고
    • Programming an artificial neural network tool for spatial interpolation in GIS—a case study for indoor radio wave propagation of WLAN
    • Sen A, Gümüsay MU, Kavas A, Bulucu U (2008) Programming an artificial neural network tool for spatial interpolation in GIS—a case study for indoor radio wave propagation of WLAN. Sensors 8(9):5996–6014
    • (2008) Sensors , vol.8 , Issue.9 , pp. 5996-6014
    • Sen, A.1    Gümüsay, M.U.2    Kavas, A.3    Bulucu, U.4
  • 58
    • 84908614016 scopus 로고    scopus 로고
    • State of the art of artificial neural networks in geotechnical engineering
    • Shahin MA, Jaksa MB, Maier HR (2008) State of the art of artificial neural networks in geotechnical engineering. Electron J Geotech Eng 8:1–26
    • (2008) Electron J Geotech Eng , vol.8 , pp. 1-26
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 59
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231
    • (1996) J Clin Epidemiol , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 60
    • 77955925179 scopus 로고    scopus 로고
    • A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping
    • Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36(9):1101–1114
    • (2010) Comput Geosci , vol.36 , Issue.9 , pp. 1101-1114
    • Vahidnia, M.H.1    Alesheikh, A.A.2    Alimohammadi, A.3    Hosseinali, F.4
  • 63
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • Wilson DR, Martinez TR (2003) The general inefficiency of batch training for gradient descent learning. Neural Netw 16:1429–1451
    • (2003) Neural Netw , vol.16 , pp. 1429-1451
    • Wilson, D.R.1    Martinez, T.R.2
  • 65
    • 0034223272 scopus 로고    scopus 로고
    • Application of artificial neural networks in image recognition and classification of crop and weeds
    • Yang CC, Prasher SO, Landry JA, Ramaswamy HS, Ditommaso A (2000) Application of artificial neural networks in image recognition and classification of crop and weeds. Can Agric Eng 42(3):147–152
    • (2000) Can Agric Eng , vol.42 , Issue.3 , pp. 147-152
    • Yang, C.C.1    Prasher, S.O.2    Landry, J.A.3    Ramaswamy, H.S.4    Ditommaso, A.5
  • 66
    • 33847316019 scopus 로고    scopus 로고
    • Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks
    • Yoon H, Hyun Y, Lee KK (2007) Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks. J Hydrol 335(1–2):68–77
    • (2007) J Hydrol , vol.335 , Issue.1-2 , pp. 68-77
    • Yoon, H.1    Hyun, Y.2    Lee, K.K.3
  • 67
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396(1–2):128–138
    • (2011) J Hydrol , vol.396 , Issue.1-2 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5
  • 68
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multilayer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Zadeh MR, Amin S, Khalili D, Singh VP (2010) Daily outflow prediction by multilayer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour Manag 24(11):2673–2688
    • (2010) Water Resour Manag , vol.24 , Issue.11 , pp. 2673-2688
    • Zadeh, M.R.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 69
    • 84856297247 scopus 로고    scopus 로고
    • Improving the prediction accuracy of recurrent neural network by a PID controller
    • Zemouri R, Gouriveau R, Patic PC (2010) Improving the prediction accuracy of recurrent neural network by a PID controller. Int J Syst Appl Eng Dev 4(2):19–34
    • (2010) Int J Syst Appl Eng Dev , vol.4 , Issue.2 , pp. 19-34
    • Zemouri, R.1    Gouriveau, R.2    Patic, P.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.