메뉴 건너뛰기




Volumn 67, Issue 1, 2012, Pages 251-264

An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia

Author keywords

Flood modeling; GIS; Johor; Malaysia; Neural network; Remote sensing; Spatial modeling

Indexed keywords

A-COEFFICIENT; ARTIFICIAL NEURAL NETWORK MODELS; DECISION MAKERS; ENVIRONMENTAL CONDITIONS; FIELD SURVEYS; FLOOD MODELING; FLOOD MODELS; FLOOD SIMULATION; FLOW ACCUMULATION; JOHOR; MALAYSIA; NATIONAL GOVERNMENTS; NATURAL HAZARD; OBJECTIVE WEIGHT; REMOTE SENSING DATA; RIVER BASINS; ROOT MEAN SQUARE ERRORS; RUNOFF DATA; SPATIAL MODELING; SUM SQUARED ERROR; THEMATIC LAYERS; VERIFICATION RESULTS;

EID: 84865760441     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-011-1504-z     Document Type: Article
Times cited : (544)

References (77)
  • 1
    • 33646417252 scopus 로고    scopus 로고
    • Artificial Neural Networks
    • In: Peter H. Sydenham, Richard Thorn (ed), John Wiley and Sons, London
    • Abraham A (2005) Artificial Neural Networks. In: Peter H. Sydenham, Richard Thorn (ed) Handbook of measuring system design. John Wiley and Sons, London, pp 901-908.
    • (2005) Handbook of measuring system design , pp. 901-908
    • Abraham, A.1
  • 2
    • 1342330867 scopus 로고    scopus 로고
    • An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas
    • Arora MK, Das Gupta AS, Gupta RP (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 25(3): 559-572.
    • (2004) Int J Remote Sens , vol.25 , Issue.3 , pp. 559-572
    • Arora, M.K.1    Das Gupta, A.S.2    Gupta, R.P.3
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000) Artificial neural networks in hydrology I: preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 39049101629 scopus 로고    scopus 로고
    • Distributed hydrological modeling and sensitivity analysis in Torysa Watershed, Slovakia
    • Bahremand A, De Smedt F (2008) Distributed hydrological modeling and sensitivity analysis in Torysa Watershed, Slovakia. Water Resour Manag 22: 393-408.
    • (2008) Water Resour Manag , vol.22 , pp. 393-408
    • Bahremand, A.1    de Smedt, F.2
  • 6
    • 0001044176 scopus 로고
    • Neural networks and their application
    • Bishop CM (1994) Neural networks and their application. Rev Sci Instrum 65(6): 1803-1830.
    • (1994) Rev Sci Instrum , vol.65 , Issue.6 , pp. 1803-1830
    • Bishop, C.M.1
  • 8
    • 0031213601 scopus 로고    scopus 로고
    • Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL
    • Blazkova S, Beven K (1997) Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J Hydrol 195(1-4): 256-278.
    • (1997) J Hydrol , vol.195 , Issue.1-4 , pp. 256-278
    • Blazkova, S.1    Beven, K.2
  • 9
    • 0037090147 scopus 로고    scopus 로고
    • Analysis of the linkage between rain and flood regime and its application to regional flood frequency estimation
    • Cunderlik JM, Burn DH (2002) Analysis of the linkage between rain and flood regime and its application to regional flood frequency estimation. J Hydrol 261(1-4): 115-131.
    • (2002) J Hydrol , vol.261 , Issue.1-4 , pp. 115-131
    • Cunderlik, J.M.1    Burn, D.H.2
  • 10
    • 20344385052 scopus 로고    scopus 로고
    • Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis
    • Dixon B (2005) Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J Hydrol 309: 17-38.
    • (2005) J Hydrol , vol.309 , pp. 17-38
    • Dixon, B.1
  • 11
    • 84857612074 scopus 로고    scopus 로고
    • The flood modeling using multiple regression analysis in Zohre & Khyrabad Basins
    • August, Tokyo, Japan
    • Farajzadeh M (2001) The flood modeling using multiple regression analysis in Zohre & Khyrabad Basins. In: 5th International Conference of Geomorphology, August, Tokyo, Japan.
    • (2001) 5th International Conference of Geomorphology
    • Farajzadeh, M.1
  • 12
    • 0036031301 scopus 로고    scopus 로고
    • Flood susceptibility zonation of drainage basins using remote sensing and GIS, case study area: Gaveh rod Iran
    • Istanbul, Turkey, 23-26 Sept 2002
    • Farajzadeh M (2002) Flood susceptibility zonation of drainage basins using remote sensing and GIS, case study area: Gaveh rod Iran. In: Proceeding of international symposium on geographic information systems, Istanbul, Turkey, 23-26 Sept 2002.
    • (2002) Proceeding of international symposium on geographic information systems
    • Farajzadeh, M.1
  • 13
    • 71349088571 scopus 로고    scopus 로고
    • The practical research on flood forecasting based on artificial neural networks
    • Feng LH, Lu J (2010) The practical research on flood forecasting based on artificial neural networks. Expert Syst Appl 37: 2974-2977.
    • (2010) Expert Syst Appl , vol.37 , pp. 2974-2977
    • Feng, L.H.1    Lu, J.2
  • 14
    • 75849163610 scopus 로고    scopus 로고
    • Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis
    • Fernandez DS, Lutz MA (2010) Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111: 90-98.
    • (2010) Eng Geol , vol.111 , pp. 90-98
    • Fernandez, D.S.1    Lutz, M.A.2
  • 15
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: principles and understanding
    • Flood I, Kartam N (1994) Neural networks in civil engineering. I: principles and understanding. J Comput Civil Eng 8(2): 131-148.
    • (1994) J Comput Civil Eng , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 16
    • 15044352194 scopus 로고    scopus 로고
    • Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela
    • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela. Eng Geol 78(1-2): 11-27.
    • (2005) Eng Geol , vol.78 , Issue.1-2 , pp. 11-27
    • Gomez, H.1    Kavzoglu, T.2
  • 19
    • 0025570959 scopus 로고
    • Radar detection of flooding beneath the forest canopy: a review
    • Hess LL, Melack JM, Simonett DS (1990) Radar detection of flooding beneath the forest canopy: a review. Int J Remote Sens 11: 1313-1325.
    • (1990) Int J Remote Sens , vol.11 , pp. 1313-1325
    • Hess, L.L.1    Melack, J.M.2    Simonett, D.S.3
  • 20
    • 0029340490 scopus 로고
    • Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C Synthetic Aperture Radar
    • Hess LL, Melack J, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C Synthetic Aperture Radar. IEEE T Geosci Remote 33: 896-903.
    • (1995) IEEE T Geosci Remote , vol.33 , pp. 896-903
    • Hess, L.L.1    Melack, J.2    Filoso, S.3    Wang, Y.4
  • 21
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Holger RM, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32: 1013-1022.
    • (1996) Water Resour Res , vol.32 , pp. 1013-1022
    • Holger, R.M.1    Dandy, G.C.2
  • 22
    • 0036845180 scopus 로고    scopus 로고
    • Evaluation of 1D and 2D numerical models for predicting river flood inundation
    • Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 268: 87-99.
    • (2002) J Hydrol , vol.268 , pp. 87-99
    • Horritt, M.S.1    Bates, P.D.2
  • 23
    • 4344638765 scopus 로고    scopus 로고
    • Flood damage and modeling using satellite remote sensing data with GIS: case study of Bangladesh
    • RitchieJerry (Ed.), Oxford: IAHS Publication
    • Islam MM, Sado K (2001) Flood damage and modeling using satellite remote sensing data with GIS: case study of Bangladesh. In: Jerry Ritchie et al (eds) Remote sensing and hydrology 2000. IAHS Publication, Oxford, pp 455-458.
    • (2001) Remote Sensing and Hydrology 2000 , pp. 455-458
    • Islam, M.M.1    Sado, K.2
  • 24
    • 0036715715 scopus 로고    scopus 로고
    • Development priority map for flood countermeasures by remote sensing data with geographic information system
    • Islam MM, Sado K (2002) Development priority map for flood countermeasures by remote sensing data with geographic information system. J Hydrol Eng 9: 346-355.
    • (2002) J Hydrol Eng , vol.9 , pp. 346-355
    • Islam, M.M.1    Sado, K.2
  • 26
    • 1642505737 scopus 로고    scopus 로고
    • Determination and application of the weights for landslide susceptibility mapping using an artificial neural network
    • Lee S, Ryu J, Won J, Park H (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71: 289-302.
    • (2004) Eng Geol , vol.71 , pp. 289-302
    • Lee, S.1    Ryu, J.2    Won, J.3    Park, H.4
  • 27
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S, Guégan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120: 65-73.
    • (1999) Ecol Model , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 28
    • 0030428001 scopus 로고    scopus 로고
    • Application of neural networks to modelling non-linear relationships in ecology
    • Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulanier S (1996) Application of neural networks to modelling non-linear relationships in ecology. Ecol Model 90: 39-52.
    • (1996) Ecol Model , vol.90 , pp. 39-52
    • Lek, S.1    Delacoste, M.2    Baran, P.3    Dimopoulos, I.4    Lauga, J.5    Aulanier, S.6
  • 29
    • 0032884033 scopus 로고    scopus 로고
    • Effects of soil morphology on hydraulic properties: I. Quantification of soil morphology
    • Lin HS, McInnes KJ, Wilding LP, Hallmark CT (1999) Effects of soil morphology on hydraulic properties: I. Quantification of soil morphology. Soil Sci Soc Am J 63: 948-953.
    • (1999) Soil Sci Soc Am J , vol.63 , pp. 948-953
    • Lin, H.S.1    McInnes, K.J.2    Wilding, L.P.3    Hallmark, C.T.4
  • 30
    • 0034091045 scopus 로고    scopus 로고
    • Classification of hydrometers based on polarimetric radar measurements: development of fuzzy logic and neuro-fuzzy systems and in situ verifications
    • Liu H, Chandrashekar V (2000) Classification of hydrometers based on polarimetric radar measurements: development of fuzzy logic and neuro-fuzzy systems and in situ verifications. J Atmos Ocean Tech 17: 140-164.
    • (2000) J Atmos Ocean Tech , vol.17 , pp. 140-164
    • Liu, H.1    Chandrashekar, V.2
  • 31
    • 0345015837 scopus 로고    scopus 로고
    • A diffusive transport approach for flow routing in GIS-based flood modelling
    • Liu YB, Gebremeskel S, De Smedt F, Hoffmann L, Pfister L (2003) A diffusive transport approach for flow routing in GIS-based flood modelling. J Hydrol 283: 91-106.
    • (2003) J Hydrol , vol.283 , pp. 91-106
    • Liu, Y.B.1    Gebremeskel, S.2    de Smedt, F.3    Hoffmann, L.4    Pfister, L.5
  • 32
    • 0029413502 scopus 로고
    • Neural nets for modeling rainfall-runoff transformations
    • Lorrai M, Sechi GM (1995) Neural nets for modeling rainfall-runoff transformations. Int Ser Prog Water Res 9: 299-313.
    • (1995) Int Ser Prog Water Res , vol.9 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 34
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4): 1013-1022.
    • (1996) Water Resour Res , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 1642423777 scopus 로고    scopus 로고
    • Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks
    • Mas JF (2004) Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuar Coast Shelf S 59: 219-230.
    • (2004) Estuar Coast Shelf S , vol.59 , pp. 219-230
    • Mas, J.F.1
  • 36
    • 80051570616 scopus 로고    scopus 로고
    • Application of a neuro-fuzzy model to landslide susceptibility mapping in a tropical hilly area
    • doi: 10. 1016/j. cageo. 2010. 10. 012
    • Oh JJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide susceptibility mapping in a tropical hilly area. Comput Geosci 37(9): 1264-1276. doi: 10. 1016/j. cageo. 2010. 10. 012.
    • (2011) Comput Geosci , vol.37 , Issue.9 , pp. 1264-1276
    • Oh, J.J.1    Pradhan, B.2
  • 37
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely sensed multi-spectral imagery
    • Paola JD, Schowengerdt RA (1995) A review and analysis of backpropagation neural networks for classification of remotely sensed multi-spectral imagery. Int J Remote Sens 16: 3033-3058.
    • (1995) Int J Remote Sens , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 38
    • 36049007132 scopus 로고    scopus 로고
    • Multi-method global sensitivity analysis of flood inundation models
    • Pappenberger F, Beven KJ, Ratto M, Matgen P (2008) Multi-method global sensitivity analysis of flood inundation models. Adv Water Resour 31: 1-14.
    • (2008) Adv Water Resour , vol.31 , pp. 1-14
    • Pappenberger, F.1    Beven, K.J.2    Ratto, M.3    Matgen, P.4
  • 39
    • 80051874134 scopus 로고    scopus 로고
    • Using microwave remote sensing for flood study in Bhuj Taluk, Kuchch District Gujarat, India
    • Pirasteh S, Rizvi SMA, Ayazi MH, Mahmoodzadeh A (2010) Using microwave remote sensing for flood study in Bhuj Taluk, Kuchch District Gujarat, India. Int Geoinform Res Dev J 1(1): 13-24.
    • (2010) Int Geoinform Res Dev J , vol.1 , Issue.1 , pp. 13-24
    • Pirasteh, S.1    Rizvi, S.M.A.2    Ayazi, M.H.3    Mahmoodzadeh, A.4
  • 40
    • 67651065249 scopus 로고    scopus 로고
    • Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques
    • doi:10.2478/v10085-009-0008-5
    • Pradhan B (2009) Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Central Eur J Geosci 1(1): 120-129. doi: 10. 2478/v10085-009-0008-5.
    • (2009) Central Eur J Geosci , vol.1 , Issue.1 , pp. 120-129
    • Pradhan, B.1
  • 41
    • 77949579826 scopus 로고    scopus 로고
    • Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing
    • Pradhan B (2010a) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spatial Hydrol 9(2): 1-18.
    • (2010) J Spatial Hydrol , vol.9 , Issue.2 , pp. 1-18
    • Pradhan, B.1
  • 42
    • 78650613649 scopus 로고    scopus 로고
    • Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches
    • doi: 10. 1007/s12524-010-0020-z
    • Pradhan B (2010b) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2): 301-320. doi: 10. 1007/s12524-010-0020-z.
    • (2010) J Indian Soc Remote Sens , vol.38 , Issue.2 , pp. 301-320
    • Pradhan, B.1
  • 43
    • 78650712774 scopus 로고    scopus 로고
    • Application of an advanced fuzzy logic model for landslide susceptibility analysis
    • Pradhan B (2010c) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Int Sys 3(3): 370-381.
    • (2010) Int J Comput Int Sys , vol.3 , Issue.3 , pp. 370-381
    • Pradhan, B.1
  • 44
    • 80051846342 scopus 로고    scopus 로고
    • Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques for landslide susceptibility analysis
    • doi: 10. 1007/s10651-010-0147-7
    • Pradhan B (2011a) Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques for landslide susceptibility analysis. Environ Ecol Stat 18(3): 471-493. doi: 10. 1007/s10651-010-0147-7.
    • (2011) Environ Ecol Stat , vol.18 , Issue.3 , pp. 471-493
    • Pradhan, B.1
  • 45
    • 79955068561 scopus 로고    scopus 로고
    • Use of GIS based fuzzy relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia
    • doi: 10. 1007/s12665-010-0705-1
    • Pradhan B (2011b) Use of GIS based fuzzy relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63(2): 329-349. doi: 10. 1007/s12665-010-0705-1.
    • (2011) Environ Earth Sci , vol.63 , Issue.2 , pp. 329-349
    • Pradhan, B.1
  • 46
    • 79955066106 scopus 로고    scopus 로고
    • Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia
    • doi:10.2113/gseegeosci.16.2.107
    • Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2): 107-126. doi: 10. 2113/gseegeosci. 16. 2. 107.
    • (2010) Environ Eng Geosci , vol.16 , Issue.2 , pp. 107-126
    • Pradhan, B.1    Buchroithner, M.F.2
  • 47
    • 70350074037 scopus 로고    scopus 로고
    • Landslide risk analysis using artificial neural network model focusing on different training sites
    • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11): 1-15.
    • (2009) Int J Phys Sci , vol.3 , Issue.11 , pp. 1-15
    • Pradhan, B.1    Lee, S.2
  • 48
    • 76749088419 scopus 로고    scopus 로고
    • Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling
    • doi:10.1016/j.envsoft.2009.10.016
    • Pradhan B, Lee S (2010a) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw 25: 747-759. doi: 10. 1016/j. envsoft. 2009. 10. 016.
    • (2010) Environ Modell Softw , vol.25 , pp. 747-759
    • Pradhan, B.1    Lee, S.2
  • 49
    • 77954084069 scopus 로고    scopus 로고
    • Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia
    • doi:10.1007/s12665-009-0245-8
    • Pradhan B, Lee S (2010b) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ Earth Sci 60: 1037-1054. doi: 10. 1007/s12665-009-0245-8.
    • (2010) Environ Earth Sci , vol.60 , pp. 1037-1054
    • Pradhan, B.1    Lee, S.2
  • 50
    • 77149157821 scopus 로고    scopus 로고
    • Regional landslide susceptibility analysis using backpropagation neural network model at Cameron Highland, Malaysia
    • doi:10.1007/s10346-009-0183-2
    • Pradhan B, Lee S (2010c) Regional landslide susceptibility analysis using backpropagation neural network model at Cameron Highland, Malaysia. Landslides 7(1): 13-30. doi: 10. 1007/s10346-009-0183-2.
    • (2010) Landslides , vol.7 , Issue.1 , pp. 13-30
    • Pradhan, B.1    Lee, S.2
  • 51
    • 77955403894 scopus 로고    scopus 로고
    • Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping
    • Pradhan B, Pirasteh S (2010) Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Adv 3(2): 26-34.
    • (2010) Disaster Adv , vol.3 , Issue.2 , pp. 26-34
    • Pradhan, B.1    Pirasteh, S.2
  • 52
    • 77949603138 scopus 로고    scopus 로고
    • Flood hazard assessment for cloud prone rainy areas in a typical tropical environment
    • Pradhan B, Shafie M (2009) Flood hazard assessment for cloud prone rainy areas in a typical tropical environment. Disaster Adv 2(2): 7-15.
    • (2009) Disaster Adv , vol.2 , Issue.2 , pp. 7-15
    • Pradhan, B.1    Shafie, M.2
  • 53
    • 77954455525 scopus 로고    scopus 로고
    • Manifestation of remote sensing data and GIS for landslide hazard analysis using spatial-based statistical models
    • doi: 10. 1007/s12517-009-0089-2
    • Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS for landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3(3): 319-326. doi: 10. 1007/s12517-009-0089-2.
    • (2010) Arab J Geosci , vol.3 , Issue.3 , pp. 319-326
    • Pradhan, B.1    Youssef, A.M.2
  • 54
    • 80052192010 scopus 로고    scopus 로고
    • A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia
    • doi:10.1111/j.1753-318X.2011.01103.x
    • Pradhan B, Youssef AM (2011) A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. J Flood Risk Manag 4: 189-202. doi: 10. 1111/j. 1753-318X. 2011. 01103. x.
    • (2011) J Flood Risk Manag , vol.4 , pp. 189-202
    • Pradhan, B.1    Youssef, A.M.2
  • 55
    • 33646521055 scopus 로고    scopus 로고
    • Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data
    • doi:10.1016/j.asr.2005.03.137
    • Pradhan B, Singh RP, Buchroithner MF (2006) Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Adv Space Res 37: 698-709. doi: 10. 1016/j. asr. 2005. 03. 137.
    • (2006) Adv Space Res , vol.37 , pp. 698-709
    • Pradhan, B.1    Singh, R.P.2    Buchroithner, M.F.3
  • 56
    • 77952010906 scopus 로고    scopus 로고
    • A GIS-based backpropagation neural network model and its cross application and validation for landslide susceptibility analyses
    • doi:10.1016/j.compenvurbsys.2009.12.004
    • Pradhan B, Lee S, Buchroithner MF (2010a) A GIS-based backpropagation neural network model and its cross application and validation for landslide susceptibility analyses. Comput Environ Urban Sys 34: 216-235. doi: 10. 1016/j. compenvurbsys. 2009. 12. 004.
    • (2010) Comput Environ Urban Sys , vol.34 , pp. 216-235
    • Pradhan, B.1    Lee, S.2    Buchroithner, M.F.3
  • 57
    • 77955354845 scopus 로고    scopus 로고
    • Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model
    • doi:10.1127/1432-8364/2010/0037
    • Pradhan B, Lee S, Buchroithner M (2010b) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogramm Fernerkun 1: 17-32. doi: 10. 1127/1432-8364/2010/0037.
    • (2010) Photogramm Fernerkun , vol.1 , pp. 17-32
    • Pradhan, B.1    Lee, S.2    Buchroithner, M.3
  • 58
    • 77952410512 scopus 로고    scopus 로고
    • Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model
    • doi:10.1007/s11806-010-0236-7
    • Pradhan B, Youssef AM, Varathrajoo R (2010c) Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geospatial Inf Sci 13(2): 93-102. doi: 10. 1007/s11806-010-0236-7.
    • (2010) Geospatial Inf Sci , vol.13 , Issue.2 , pp. 93-102
    • Pradhan, B.1    Youssef, A.M.2    Varathrajoo, R.3
  • 59
    • 78649318558 scopus 로고    scopus 로고
    • Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia)
    • doi: 10. 1109/TGRS. 2010. 2050328
    • Pradhan B, Sezer E, Gokceoglu C, Buchroithner MF (2010d) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(12): 4164-4177. doi: 10. 1109/TGRS. 2010. 2050328.
    • (2010) IEEE T Geosci Remote , vol.48 , Issue.12 , pp. 4164-4177
    • Pradhan, B.1    Sezer, E.2    Gokceoglu, C.3    Buchroithner, M.F.4
  • 61
    • 0026836829 scopus 로고
    • A neural network approach to the determination of aquifer parameters
    • Rashid A, Aziz A, Wong KFV (1992) A neural network approach to the determination of aquifer parameters. Ground Water 30: 164-166.
    • (1992) Ground Water , vol.30 , pp. 164-166
    • Rashid, A.1    Aziz, A.2    Wong, K.F.V.3
  • 62
    • 0034174354 scopus 로고    scopus 로고
    • Neural networks for agrichemical vulnerability assessment of rural private wells
    • Ray C, Klindworth KK (2000) Neural networks for agrichemical vulnerability assessment of rural private wells. J Hydrol Eng 4: 162-171.
    • (2000) J Hydrol Eng , vol.4 , pp. 162-171
    • Ray, C.1    Klindworth, K.K.2
  • 63
    • 0029475922 scopus 로고
    • Predicting permeability from porosity using artificial neural networks
    • Rogers SJ, Chen HC, Kopaska-Merkel DC, Fang JH (1995) Predicting permeability from porosity using artificial neural networks. AAPG Bull 79: 1786-1797.
    • (1995) AAPG Bull , vol.79 , pp. 1786-1797
    • Rogers, S.J.1    Chen, H.C.2    Kopaska-Merkel, D.C.3    Fang, J.H.4
  • 65
    • 0032122509 scopus 로고    scopus 로고
    • Neural network analysis for hierarchical prediction of soil hydraulic properties
    • Schaap MG, Leij FJ, VanGenuchten MT (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci Soc Am J 62: 847-855.
    • (1998) Soil Sci Soc Am J , vol.62 , pp. 847-855
    • Schaap, M.G.1    Leij, F.J.2    Vangenuchten, M.T.3
  • 66
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See L, Openshaw S (2000) A hybrid multi-model approach to river level forecasting. Hydrol Sci J 45: 523-536.
    • (2000) Hydrol Sci J , vol.45 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 67
    • 79952454832 scopus 로고    scopus 로고
    • Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia
    • doi: 10. 1016/j. eswa. 2010. 12. 167
    • Sezer E, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38(7): 8208-8219. doi: 10. 1016/j. eswa. 2010. 12. 167.
    • (2011) Expert Syst Appl , vol.38 , Issue.7 , pp. 8208-8219
    • Sezer, E.1    Pradhan, B.2    Gokceoglu, C.3
  • 68
    • 20544433687 scopus 로고    scopus 로고
    • Sensitivity analyses of a distributed catchment model to verify the model structure
    • Sieber A, Uhlenbrook S (2005) Sensitivity analyses of a distributed catchment model to verify the model structure. J Hydrol 310: 216-235.
    • (2005) J Hydrol , vol.310 , pp. 216-235
    • Sieber, A.1    Uhlenbrook, S.2
  • 70
    • 0030300642 scopus 로고    scopus 로고
    • Testing an artificial neural network for predicting soil hydraulic conductivity
    • Tamari S, Wosten JHM, Ruiz-Suarez JC (1996) Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci Soc Am J 57: 1088-1095.
    • (1996) Soil Sci Soc Am J , vol.57 , pp. 1088-1095
    • Tamari, S.1    Wosten, J.H.M.2    Ruiz-Suarez, J.C.3
  • 71
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feed-forward neural network: Four layers versus three
    • Tamura SI, Tateishi M (1997) Capabilities of a four-layered feed-forward neural network: Four layers versus three. IEEE T Neural Netw 8(2): 251-255.
    • (1997) IEEE T Neural Netw , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.I.1    Tateishi, M.2
  • 74
    • 78649639215 scopus 로고    scopus 로고
    • World Meteorological Organisation, Accessed 15 July 2010
    • World Meteorological Organisation (2008) Urban flood management: a tool for integrated flood management. http://www. wmo. int/pages/mediacentre/press_releases/pr_835_en. html. Accessed 15 July 2010.
    • (2008) Urban flood management: A tool for integrated flood management
  • 75
    • 0029657694 scopus 로고    scopus 로고
    • Management of diffuse pollution in groundwater under imprecise conditions using fuzzy models
    • Woldt W, Dahab I, Bogardi C, Dou C (1996) Management of diffuse pollution in groundwater under imprecise conditions using fuzzy models. Water Sci Technol 33: 249-257.
    • (1996) Water Sci Technol , vol.33 , pp. 249-257
    • Woldt, W.1    Dahab, I.2    Bogardi, C.3    Dou, C.4
  • 76
    • 85028123616 scopus 로고    scopus 로고
    • Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery
    • doi: 10. 1007/s12665-010-0551-1
    • Youssef AM, Pradhan B, Hassan AM (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62(3): 611-623. doi: 10. 1007/s12665-010-0551-1.
    • (2011) Environ Earth Sci , vol.62 , Issue.3 , pp. 611-623
    • Youssef, A.M.1    Pradhan, B.2    Hassan, A.M.3
  • 77
    • 0031149312 scopus 로고    scopus 로고
    • Study on the contamination of fracture karst water in Boshan District, China
    • Zhu XY, SHi Xu, Zhu J-J, Zhou N-Q, Wu C-Y (1997) Study on the contamination of fracture karst water in Boshan District, China. Ground Water 35: 538-545.
    • (1997) Ground Water , vol.35 , pp. 538-545
    • Zhu, X.Y.1    Shi, X.2    Zhu, J.-J.3    Zhou, N.-Q.4    Wu, C.-Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.