메뉴 건너뛰기




Volumn 63, Issue 10, 2014, Pages 3253-3265

Browning of white adipose cells by intermediate metabolites: An adaptive mechanism to alleviate redox pressure

Author keywords

[No Author keywords available]

Indexed keywords

3 HYDROXYBUTYRIC ACID; ADIPONECTIN; FATTY ACID BINDING PROTEIN 4; FIBROBLAST GROWTH FACTOR 21; GLUCOSE TRANSPORTER 1; HYPOXIA INDUCIBLE FACTOR 1ALPHA; KETONE BODY; LACTIC ACID; MESSENGER RNA; MONOCARBOXYLATE TRANSPORTER 1; MONOCARBOXYLATE TRANSPORTER 4; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; UNCOUPLING PROTEIN 1; VASCULOTROPIN;

EID: 84907485620     PISSN: 00121797     EISSN: 1939327X     Source Type: Journal    
DOI: 10.2337/db13-1885     Document Type: Article
Times cited : (224)

References (48)
  • 1
    • 84875849127 scopus 로고    scopus 로고
    • White and brown adipose stem cells: From signaling to clinical implications
    • Algire C, Medrikova D, Herzig S. White and brown adipose stem cells: from signaling to clinical implications. Biochim Biophys Acta 2013;1831:896-904
    • (2013) Biochim Biophys Acta , vol.1831 , pp. 896-904
    • Algire, C.1    Medrikova, D.2    Herzig, S.3
  • 2
    • 0021322138 scopus 로고
    • Thermogenic mechanisms in brown fat
    • Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev 1984;64:1-64
    • (1984) Physiol Rev , vol.64 , pp. 1-64
    • Nicholls, D.G.1    Locke, R.M.2
  • 3
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: Function and physiological significance
    • Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277-359
    • (2004) Physiol Rev , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 6
    • 0026075907 scopus 로고
    • Convertible adipose tissue in mice
    • Loncar D. Convertible adipose tissue in mice. Cell Tissue Res 1991;266: 149-161
    • (1991) Cell Tissue Res , vol.266 , pp. 149-161
    • Loncar, D.1
  • 7
    • 0027051199 scopus 로고
    • Occurrence of brown adipocytes in rat white adipose tissue: Molecular and morphological characterization
    • Cousin B, Cinti S, Morroni M, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 1992;103:931-942
    • (1992) J Cell Sci , vol.103 , pp. 931-942
    • Cousin, B.1    Cinti, S.2    Morroni, M.3
  • 8
    • 84873518501 scopus 로고    scopus 로고
    • Adaptive thermogenesis in adipocytes: Is beige the new brown?
    • Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013;27:234-250
    • (2013) Genes Dev , vol.27 , pp. 234-250
    • Wu, J.1    Cohen, P.2    Spiegelman, B.M.3
  • 9
    • 79751503329 scopus 로고    scopus 로고
    • Brown adipose tissue activity controls triglyceride clearance
    • Barte It A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011;17:200-205
    • (2011) Nat Med , vol.17 , pp. 200-205
    • Barte It, A.1    Bruns, O.T.2    Reimer, R.3
  • 10
    • 85027909934 scopus 로고    scopus 로고
    • Adipose tissue browning and metabolic health
    • Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014;10:24-36
    • (2014) Nat Rev Endocrinol , vol.10 , pp. 24-36
    • Bartelt, A.1    Heeren, J.2
  • 11
    • 0028865142 scopus 로고
    • Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity
    • Kopecky J, Clarke G, Enerbäck S, Spiegelman B, Kozak LP. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 1995;96:2914-2923
    • (1995) J Clin Invest , vol.96 , pp. 2914-2923
    • Kopecky, J.1    Clarke, G.2    Enerbäck, S.3    Spiegelman, B.4    Kozak, L.P.5
  • 12
    • 84875183640 scopus 로고    scopus 로고
    • The SLC16 gene family - Structure, role and regulation in health and disease
    • Haiestrap AP. The SLC16 gene family - structure, role and regulation in health and disease. Mol Aspects Med 2013;34:337-349
    • (2013) Mol Aspects Med , vol.34 , pp. 337-349
    • Haiestrap, A.P.1
  • 13
    • 0034683142 scopus 로고    scopus 로고
    • Lactate transport in rat adipocytes: Identification of monocarboxylate transporter 1 (MCT1) and its modulation during streptozotocin-induced diabetes
    • Hajduch E, Heyes RR, Watt PW, Hundal HS. Lactate transport in rat adipocytes: identification of monocarboxylate transporter 1 (MCT1) and its modulation during streptozotocin-induced diabetes. FEES Lett 2000;479:89-92
    • (2000) FEES Lett , vol.479 , pp. 89-92
    • Hajduch, E.1    Heyes, R.R.2    Watt, P.W.3    Hundal, H.S.4
  • 14
    • 70349381447 scopus 로고    scopus 로고
    • Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue
    • Iwanaga T, Kuchiiwa T, Saito M. Histochemical demonstration of monocarboxylate transporters in mouse brown adipose tissue. Biomed Res 2009;30: 217-225
    • (2009) Biomed Res , vol.30 , pp. 217-225
    • Iwanaga, T.1    Kuchiiwa, T.2    Saito, M.3
  • 15
    • 84878917267 scopus 로고    scopus 로고
    • Exercise as a new physiological stimulus for brown adipose tissue activity
    • De Matteis R, Lucertini F, Guescini M, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis 2013;23: 582-590
    • (2013) Nutr Metab Cardiovasc Dis , vol.23 , pp. 582-590
    • De Matteis, R.1    Lucertini, F.2    Guescini, M.3
  • 16
    • 77949884840 scopus 로고    scopus 로고
    • Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes
    • Pérez de Heredia F, Wood IS, Trayhurn P. Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflugers Arch 2010;459:509-518
    • (2010) Pflugers Arch , vol.459 , pp. 509-518
    • Pérez De Heredia, F.1    Wood, I.S.2    Trayhurn, P.3
  • 17
    • 70350346153 scopus 로고    scopus 로고
    • GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors
    • Ahmed K, Tunaru S, Offermanns S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol Sci 2009;30: 557-562
    • (2009) Trends Pharmacol Sci , vol.30 , pp. 557-562
    • Ahmed, K.1    Tunaru, S.2    Offermanns, S.3
  • 18
    • 0036339988 scopus 로고    scopus 로고
    • Lactate: A key metabolite in the intercellular metabolic interplay
    • Leverve XM, Mustafa I. Lactate: A key metabolite in the intercellular metabolic interplay. Grit Care 2002;6:284-285
    • (2002) Grit Care , vol.6 , pp. 284-285
    • Leverve, X.M.1    Mustafa, I.2
  • 19
    • 71249103087 scopus 로고    scopus 로고
    • Cell-cell and intracellular lactate shuttles
    • Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol 2009;587: 5591-5600
    • (2009) J Physiol , vol.587 , pp. 5591-5600
    • Brooks, G.A.1
  • 21
    • 57449097020 scopus 로고    scopus 로고
    • Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
    • Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008;118:3930-3942
    • (2008) J Clin Invest , vol.118 , pp. 3930-3942
    • Sonveaux, P.1    Végran, F.2    Schroeder, T.3
  • 22
    • 84858120137 scopus 로고    scopus 로고
    • Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis
    • Sonveaux P, Copetti T, De Saedeleer CJ, et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 2012;7:e33418
    • (2012) PLoS ONE , vol.7 , pp. e33418
    • Sonveaux, P.1    Copetti, T.2    De Saedeleer, C.J.3
  • 23
    • 79953329777 scopus 로고    scopus 로고
    • Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kB/IL-8 pathway that drives tumor angiogenesis
    • Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 2011;71:2550-2560
    • (2011) Cancer Res , vol.71 , pp. 2550-2560
    • Végran, F.1    Boidot, R.2    Michiels, C.3    Sonveaux, P.4    Feron, O.5
  • 24
    • 34547790342 scopus 로고    scopus 로고
    • Lactate sensitive transcription factor network in L6 cells: Activation of MCT1 and mitochondrial biogenesis
    • Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 2007;21:2602-2612
    • (2007) FASEB J , vol.21 , pp. 2602-2612
    • Hashimoto, T.1    Hussien, R.2    Oommen, S.3    Gohil, K.4    Brooks, G.A.5
  • 25
    • 0037731447 scopus 로고    scopus 로고
    • Lactate-sensitive response elements in genes involved in hyaluronan catabolism
    • Form by B, Stern R. Lactate-sensitive response elements in genes involved in hyaluronan catabolism. Biochem Biophys Res Commun 2003;305:203-208
    • (2003) Biochem Biophys Res Commun , vol.305 , pp. 203-208
    • Formby, B.1    Stern, R.2
  • 26
    • 61449221901 scopus 로고    scopus 로고
    • Lactate boosts TLR4 signaling and NF-kappaB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation
    • Samuvel DJ, Sundararaj KP, Nareika A, Lopes-Virella MF, Huang Y. Lactate boosts TLR4 signaling and NF-kappaB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation. J Immunol 2009;182:2476-2484
    • (2009) J Immunol , vol.182 , pp. 2476-2484
    • Samuvel, D.J.1    Sundararaj, K.P.2    Nareika, A.3    Lopes-Virella, M.F.4    Huang, Y.5
  • 27
    • 10744222119 scopus 로고    scopus 로고
    • Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives
    • Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004;109:656-663
    • (2004) Circulation , vol.109 , pp. 656-663
    • Planat-Benard, V.1    Silvestre, J.S.2    Cousin, B.3
  • 28
    • 57449120498 scopus 로고    scopus 로고
    • The derivation of mesenchymal stem cells from human embryonic stem cells
    • Brown SE, Tong W, Krebsbach PH. The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs 2009;189:256-260
    • (2009) Cells Tissues Organs , vol.189 , pp. 256-260
    • Brown, S.E.1    Tong, W.2    Krebsbach, P.H.3
  • 29
    • 61749094336 scopus 로고    scopus 로고
    • Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells
    • Taura D, Noguchi M, Sone M, et al. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett 2009;583:1029-1033
    • (2009) FEBS Lett , vol.583 , pp. 1029-1033
    • Taura, D.1    Noguchi, M.2    Sone, M.3
  • 30
    • 84901436720 scopus 로고    scopus 로고
    • Differentiation of human induced pluripotent stem cells into brown and white adipocytes: Role of Pax3
    • (a). Mohsen-Kanson T, Hafner AL, Wdziekonski B, et al. Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3. Stem Cells 2014;32:1459-1467
    • (2014) Stem Cells , vol.32 , pp. 1459-1467
    • Mohsen-Kanson, T.1    Hafner, A.L.2    Wdziekonski, B.3
  • 31
    • 4644329647 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: A mechanism for hypoxia-dependent effect
    • Carrière A, Carmona MC, Fernandez Y, et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 2004;279: 40462-40469
    • (2004) J Biol Chem , vol.279 , pp. 40462-40469
    • Carrière, A.1    Carmona, M.C.2    Fernandez, Y.3
  • 32
    • 0034663601 scopus 로고    scopus 로고
    • The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
    • Dimmer KS, Friedrich B, Lang F, Deitmer JW, Bröer S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 2000;350:219-227
    • (2000) Biochem J , vol.350 , pp. 219-227
    • Dimmer, K.S.1    Friedrich, B.2    Lang, F.3    Deitmer, J.W.4    Bröer, S.5
  • 33
    • 33947724515 scopus 로고    scopus 로고
    • HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells
    • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007;129:111-122
    • (2007) Cell , vol.129 , pp. 111-122
    • Fukuda, R.1    Zhang, H.2    Kim, J.W.3    Shimoda, L.4    Dang, C.V.5    Semenza, G.L.6
  • 35
    • 77950226740 scopus 로고    scopus 로고
    • Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation
    • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1 -containing adipocytes molecularly distinct from classic brown adipocytes J Biol Chem 2010 285 7153-7164 of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1 -containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2010;285:7153-7164
    • (2010) J Biol Chem , vol.285 , pp. 7153-7164
    • Petrovic, N.1    Walden, T.B.2    Shabalina, I.G.3    Timmons, J.A.4    Cannon, B.5    Nedergaard, J.6
  • 36
    • 84858039282 scopus 로고    scopus 로고
    • PPARγy agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
    • Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARγy agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 2012;15:395-404
    • (2012) Cell Metab , vol.15 , pp. 395-404
    • Ohno, H.1    Shinoda, K.2    Spiegelman, B.M.3    Kajimura, S.4
  • 37
    • 84861559049 scopus 로고    scopus 로고
    • 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes
    • Liu C, Kuei C, Zhu J, et al. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J Pharmacol Exp Ther 2012;341:794-801
    • (2012) J Pharmacol Exp Ther , vol.341 , pp. 794-801
    • Liu, C.1    Kuei, C.2    Zhu, J.3
  • 38
    • 75149178349 scopus 로고    scopus 로고
    • Tumor metabolism of lactate: The influence and therapeutic potential for MCT and CD147 regulation
    • Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 2010;6:127 -148
    • (2010) Future Oncol , vol.6 , pp. 127-148
    • Kennedy, K.M.1    Dewhirst, M.W.2
  • 39
    • 31044433796 scopus 로고    scopus 로고
    • Lactate - A signal coordinating cell and systemic function
    • Philp A, Macdonald AL, Watt PW. Lactate-a signal coordinating cell and systemic function. J Exp Biol 2005;208:4561-4575
    • (2005) J Exp Biol , vol.208 , pp. 4561-4575
    • Philp, A.1    Macdonald, A.L.2    Watt, P.W.3
  • 40
    • 3242798360 scopus 로고    scopus 로고
    • Lactate in solid malignant tumors: Potential basis of a metabolic classification in clinical oncology
    • Walenta S, Schroeder T, Mueller-Klieser W. Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 2004;11:2195-2204
    • (2004) Curr Med Chem , vol.11 , pp. 2195-2204
    • Walenta, S.1    Schroeder, T.2    Mueller-Klieser, W.3
  • 41
    • 77950261397 scopus 로고    scopus 로고
    • An autocrine lactate loop mediates insulindependent inhibition of lipolysis through GPR81
    • Ahmed K, Tunaru S, Tang C, et al. An autocrine lactate loop mediates insulindependent inhibition of lipolysis through GPR81. Cell Metab 2010;11:311-319
    • (2010) Cell Metab , vol.11 , pp. 311-319
    • Ahmed, K.1    Tunaru, S.2    Tang, C.3
  • 42
    • 84867877340 scopus 로고    scopus 로고
    • The NAD metabolome - A key determinant of cancer cell biology
    • Chiarugi A, Dölle C, Felici R, Ziegler M. The NAD metabolome-a key determinant of cancer cell biology. Nat Rev Cancer 2012;12:741-752
    • (2012) Nat Rev Cancer , vol.12 , pp. 741-752
    • Chiarugi, A.1    Dölle, C.2    Felici, R.3    Ziegler, M.4
  • 43
    • 44149113548 scopus 로고    scopus 로고
    • Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex
    • Kajimura S, Seale P, Tomaru T, et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 2008;22:1397-1409
    • (2008) Genes Dev , vol.22 , pp. 1397-1409
    • Kajimura, S.1    Seale, P.2    Tomaru, T.3
  • 45
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by SirT 1 -dependent deacetylation of Ppar-C
    • Qiang L, Wang L, Kon N, et al. Brown remodeling of white adipose tissue by SirT 1 -dependent deacetylation of Ppar-γ. Cell 2012;150:620-632
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1    Wang, L.2    Kon, N.3
  • 46
    • 84862776702 scopus 로고    scopus 로고
    • A PGC1 -α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
    • Boström P, Wu J, Jedrychowski MP, et al. A PGC1 -a-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463-468
    • (2012) Nature , vol.481 , pp. 463-468
    • Boström, P.1    Wu, J.2    Jedrychowski, M.P.3
  • 47
    • 84861764348 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet
    • Srivastava S, Kashiwaya Y, King MT, et al. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J 2012;26:2351-2362
    • (2012) FASEB J , vol.26 , pp. 2351-2362
    • Srivastava, S.1    Kashiwaya, Y.2    King, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.