메뉴 건너뛰기




Volumn 59, Issue , 2013, Pages 183-192

3D hybrid bioprinting of macrovascular structures

Author keywords

3D bioprinting; Computer aided biomodeling; Hybrid cell biomaterial printing; Scaffold free vascular tissue engineering

Indexed keywords


EID: 84891697477     PISSN: 18777058     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.proeng.2013.05.109     Document Type: Conference Paper
Times cited : (38)

References (12)
  • 4
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C., Marga F. S., Niklason L. E., Forgacs G., Scaffold-free vascular tissue engineering using bioprinting, Biomaterials, 30, 5910-7, (2009).
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 6
    • 84873914826 scopus 로고    scopus 로고
    • Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates
    • Faulkner-Jones A., Greenhough S., King J. A., Gardner J., Courtney A., Shu W., Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates, Biofabrication, 5:015013, (2013).
    • (2013) Biofabrication , vol.5 , pp. 015013
    • Faulkner-Jones, A.1    Greenhough, S.2    King, J.A.3    Gardner, J.4    Courtney, A.5    Shu, W.6
  • 7
    • 83755220815 scopus 로고    scopus 로고
    • Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion - Part 2: Influence of pore size and geometry
    • Domingos, M., et al., Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion - Part 2: Influence of pore size and geometry. Virtual and Physical Prototyping, 2011. 6(3): p. 157-165.
    • (2011) Virtual and Physical Prototyping , vol.6 , Issue.3 , pp. 157-165
    • Domingos, M.1
  • 8
    • 82055190168 scopus 로고    scopus 로고
    • A functionally gradient variational porosity architecture for hollowed scaffolds fabrication
    • Khoda, A., I.T. Ozbolat, and B. Koc, A functionally gradient variational porosity architecture for hollowed scaffolds fabrication. Biofabrication, 2011. 3(3): p. 1-15.
    • (2011) Biofabrication , vol.3 , Issue.3 , pp. 1-15
    • Khoda, A.1    Ozbolat, I.T.2    Koc, B.3
  • 9
    • 78650325718 scopus 로고    scopus 로고
    • Engineered tissue scaffolds with variational porous architecture
    • Khoda, A.K.M.B., I.T. Ozbolat, and B. Koc, Engineered Tissue Scaffolds With Variational Porous Architecture. Journal of Biomechanical Engineering, 2011. 133(1): p. 011001.
    • (2011) Journal of Biomechanical Engineering , vol.133 , Issue.1 , pp. 011001
    • Khoda, A.K.M.B.1    Ozbolat, I.T.2    Koc, B.3
  • 10
    • 77956902833 scopus 로고    scopus 로고
    • Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing
    • Melchels, F.P.W., et al., Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia, 2010. 6(11): p. 4208-4217.
    • (2010) Acta Biomaterialia , vol.6 , Issue.11 , pp. 4208-4217
    • Melchels, F.P.W.1
  • 12
    • 83555177196 scopus 로고    scopus 로고
    • Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
    • Gaetani, R., et al., Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 2012. 33(6): p. 1782-1790.
    • (2012) Biomaterials , vol.33 , Issue.6 , pp. 1782-1790
    • Gaetani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.